精英家教网 > 初中数学 > 题目详情
已知抛物线y=-x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.
(1)写出A,B,C三点的坐标;
(2)若点P位于抛物线的对称轴的右侧:
①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据抛物线的解析式即可得出点A、B、C的坐标;
(2)①分两种情况讨论,①△PQA∽△AOC,②△AQP∽△AOC,继而根据相似三角形的对应边成比例可得出点P的坐标;
②设点Q(x,4),P(x,-x2+3x+4),从而表示出PQ,结合△AEM∽△MFP,利用相似三角形的性质可得出关于x的方程,继而解出后检验即可得出答案.
解答:解:(1)由题意得,y=-x2+3x+4=-(x-4)(x+1),
故可得:A(0,4),B(4,0),C(-1,0),

(2)
过点M作x轴的垂线交l于E,交另一条直线于F,
①1)若△PQA∽△AOC,则=,即=,解得:x=7;
2)若△AQP∽△AOC,则=,即=
解得:x=
综合1)2)可得点P均在抛物线对称轴的右侧,
∴点P的坐标为
②设点Q(x,4),P(x,-x2+3x+4),则PQ=x2-3x=PM,
∵△AEM∽△MFP.
则有
∵ME=OA=4,AM=AQ=x,PM=PQ=x2-3x,

解得:PF=4x-12,
∴OM=(4x-12)-x=3x-12,
Rt△AOM中,由勾股定理得OM2+OA2=AM2
∴(3x-12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,
故点P的坐标为(4,0)或(5,-6).
点评:此题考查了二次函数的综合题目,难点在第二问,①需要注意讨论,不要漏解,②需要注意先设出点P及点Q的坐标,然后利用相似三角形及勾股定理的知识进行求解,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案