【题目】如图,在△ABC中,AB=AC,点O为∠BAC的平分线上一点,连接OB、OC.
(1)求证:OB=OC;
(2)若OA=OC,∠BAC=46°,求∠OCB的度数.
【答案】(1)见解析.(2)44°
【解析】
(1)由OA平分∠BAC可知∠BAO=∠CAO,由SAS即可证明△BAO≌△CAO,从而得出结论.
(2)由(1)可知∠OAC=∠OAB=23°,由OA=OC可知∠OAC=∠OCA=23°,由三角形外角性质可知∠COB=2∠OAC+2∠OAB=2∠BAC即可解答.
证明:(1)∵OA平分∠BAC,
∴∠BAO=∠CAO=∠BAC.
在△BAO和△CAO中,
∴△BAO≌△CAO(SAS)
∴OB=OC.
(2)由(1)得∴∠BAO=∠CAO=∠BAC,OB=OC,
∵OA=OC,
∴OA=OB=OC,
∴∠OAC=∠OCA=∠BAO=∠OBA=23°,
∵∠COB=∠OAC+∠OCA+∠BAO+∠OBA=2∠BAC=92°.
∴∠OCB=(180°﹣92°)÷2=44°
科目:初中数学 来源: 题型:
【题目】如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)证明推断:如图①,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:.
(2)类比探究:如图②,在正方形ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F,若AB=6,求OF的长;
(3)拓展运用:若正方形ABCD变为□ABCD,如图③,连结DE交AC于点G,若四边形OFEG的面积为,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+c经过点A(0,2)和点B(-1,0).
(1)求此抛物线的解析式;
(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;
(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,对角线AC,BD交于点O,E是BC上一点,连接DE,点F在边CD上,且AF⊥CD交DE于点G,连接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的长.
(2)求证:AD=CG+DG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D是AB的中点,AC<BC.
(1)试用无刻度的直尺和圆规,在BC上作一点E,使得直线ED平分ABC的周长;(不要求写作法,但要保留作图痕迹).
(2)在(1)的条件下,若DE分Rt△ABC面积为1﹕2两部分,请探究AC与BC的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了提高学生的综合素质,成立了以下社团:.机器人,.围棋,.羽毛球,.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图中所占扇形的圆心角为.
根据以上信息,解答下列问题:
这次被调查的学生共有 人;
请你将条形统计图补充完整;
若该校共有学生加入了社团,请你估计这名学生中有多少人参加了羽毛球社团;
在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com