精英家教网 > 初中数学 > 题目详情

【题目】某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.

【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.

试题解析:由题意得:(1)50+x-40=x+10(元),

(2)设每个定价增加x,

列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70,应进货200,

(3)设每个定价增加x,获得利润为y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,x=15,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250.

型】解答
束】
24

【题目】猜想与证明:

如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若MAF的中点,连接DM、ME,试猜想DMME的关系,并证明你的结论.

拓展与延伸:

(1)若将猜想与证明中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DMME的关系为   

(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.

【解析】

试题分析:延长EMAD于点H,根据ABCDCEFG为矩形得到AD∥EF,得到△FME△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EMAD于点H,根据ABCDCEFG为矩形得到AD∥EF,得到△FME△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°∠FCA=45°,根据RT△ADFAM=MF得出DM=AM=MF,根据RT△AEFAM=MF得出AM=MF=ME,从而说明DM=ME.

试题解析:如图1,延长EMAD于点H四边形ABCDCEFG是矩形,∴AD∥EF

∴∠EFM=∠HAM

∵∠FME=∠AMHFM=AM

△FME△AMH中,

∴△FME≌△AMHASA

∴HM=EM

RT△HDE中,HM=DE

∴DM=HM=ME

∴DM=ME

1)、如图1,延长EMAD于点H

四边形ABCDCEFG是矩形,

∴AD∥EF

∴∠EFM=∠HAM

∵∠FME=∠AMHFM=AM

△FME△AMH中,

∴△FME≌△AMHASA

∴HM=EM

RT△HDE中,HM=EM

∴DM=HM=ME

∴DM=ME

2)、如图2,连接AE

四边形ABCDECGF是正方形,

∴∠FCE=45°∠FCA=45°

∴AEEC在同一条直线上,

RT△ADF中,AM=MF

∴DM=AM=MF

RT△AEF中,AM=MF

∴AM=MF=ME

∴DM=ME

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 两点的坐标分别为,点分别是直线x轴上的动点,,是线段的中点,连接轴于点;当⊿面积取得最小值时,的值是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接ABC中,∠CAB90°AB2AC,过点ABC的垂线m交⊙O于另一点D,垂足为H,点E上异于AB的一个动点,射线BE交直线m于点F,连接AE,连接DEBC于点G

1)求证:FED∽△AEB

2)若AC2,连接CE,求AE的长;

3)在点E运动过程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了了解在校初中生阅读数学文化史类书籍的现状,随机抽取了初中部部分学生进行研究调查,依据相关数据绘制成以下不完整的的统计图表,请你根据图表中的信息解答下列问题:

类别

人数

占总人数比例

重视

a

0.3

一般

57

0.38

不重视

b

C

说不清楚

9

0.06

1)求表格中abc的值,并补全统计图;

2)若该校共有初中生2400名,请估计该校不重视阅读数学文化史书籍的初中生人数;

3)若小明和小华去书店,打算从ABCD四本数学文化史类书籍中随机选取一本,请用画树状图或列表格的方法,求两人恰好选中同一本书籍的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2009517日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.

1)在517日至521日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到526日,日本甲型H1N1流感累计确诊病例将会达到多少人?

2)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了迎接疫情彻底结束后的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表

运动鞋价格

进价(/)

售价(/)

已知元购进甲种运动鞋的数量与用元购进乙种运动鞋的数量相同.

的值;

要使购进的甲、乙两种运动鞋共双的总利润(利润售价进价)不少于元,且甲种运动鞋的数量不超过双,问该专卖店共有几种进货方案;

的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在边长为6的正方形ABCD外以CD为底边作等腰直角CDE,连接BE,交CD于点F,则CF=___________

查看答案和解析>>

同步练习册答案