精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线顶点Ax轴负半轴上,与y轴交于点BOB1,△OAB为等腰直角三角形

1)求抛物线的解析式

2)若点C在抛物线上,若△ABC为直角三角形,求点C的坐标

3)已知直线DE过点(-1,-4),交抛物线于点DE,过DDFx轴,交抛物线于点F,求证:直线EF经过一个定点,并求定点的坐标

【答案】1;(2;(3)见解析,定点

【解析】

1)根据题意可得出点A的坐标,用顶点式求解抛物线解析式即可;

2)设点C的坐标为(x,y),利用勾股定理的逆定理分三种情况讨论即可;

3)设的解析式为,联立直线DE与抛物线解析式得出,从而得出,继而得出,再设的解析式为,通过联立得出,进一步得出,联立①②③④得,所以,过定点

解:(1)根据题意可得出抛物线顶点的坐标为(-1,0),

∴抛物线的解析式为:

2)设点C的坐标为(x,y)A(-1,0)B(0,1)

为直角顶点时,

整理得:

解得:(舍去),

∴点C的坐标为

同理,当为直角顶点时,

整理得:

解得:(舍去),

∴点C的坐标为

为直角顶点时,不存在符合条件的点C

3)设的解析式为,联立

得,

F关于对称轴对称,

的解析式为

联立

得,

联立①②③④得

,过定点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.

1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?

2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲地有42吨货物要运到乙地,有大、小两种货车可供选择,具体收费情况如表:

类型

载重量(吨)

运费(元/车)

大货车

8

450

小货车

5

300

运完这批货物最少要支付运费_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线 y=ax2 -2ax+4(a<0) x 轴于点 AB,与 y 轴交于点 CAB=6

1)如图 1,求抛物线的解析式;

2 如图 2,点 R 为第一象限的抛物线上一点,分别连接 RBRC,设RBC 的面积为 s,点 R 的横坐标为 t,求 s t 的函数关系式;

3)在(2)的条件下,如图 3,点 D x 轴的负半轴上,点 F y 轴的正半轴上,点 E OB 上一点,点 P 为第一象限内一点,连接 PDEFPD OC 于点 GDG=EFPDEF,连接 PE,∠PEF=2PDE,连接 PBPC,过点R RTOB 于点 T,交 PC 于点 S,若点 P BT 的垂直平分线上,OB-TS=,求点 R 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A04)、B20),点CD分别是OAAB的中点,在射线CD上有一动点P,若△ABP是直角三角形,则点P的坐标为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bxcx轴交于点A(-1O)、C30),点B为抛物线顶点,直线BD为抛物线的对称轴,点Dx轴上,连接ABBC.

⑴如图1,若∠ABC60°,则点B的坐标为______________;

⑵如图2,若∠ABC90°,ABy轴交于点E,连接CE.

①求这条抛物线的解析式;

②点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;

③如图3,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON90°,已知△ABC中,ACBCAB6,△ABC的顶点AB分别在边OMON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有(  )个.

A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

同步练习册答案