精英家教网 > 初中数学 > 题目详情

【题目】如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是

【答案】10
【解析】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,

函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,

∴AB=5,BC=4,

∴△ABC的面积是: ×4×5=10.

所以答案是:10.


【考点精析】解答此题的关键在于理解一次函数的图象和性质的相关知识,掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.

(1)求乙工程队单独完成这项工程所需的天数;

(2)求两队合作完成这项工程所需的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.

(1)求证:直线BD与⊙O相切;
(2)若AD:AE= ,BC=6,求切线BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,

(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:

收集数据(单位:):

甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.

乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.

整理数据:

组别频数

165.5~170.5

170.5~175.5

175.5~180.5

180.5~185.5

185.5~190.5

190.5~195.5

甲车间

2

4

5

6

2

1

乙车间

1

2

2

0

分析数据:

车间

平均数

众数

中位数

方差

甲车间

180

185

180

43.1

乙车间

180

180

180

22.6

应用数据;

(1)计算甲车间样品的合格率.

(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?

(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AC+BC=24,AO,BO分别是角平分线,且MNBA,分别交AC于N,BC于M,则CMN的周长为(

A.12 B.24 C.36 D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的部分图像 ,在下列四个结论中正确的是
①不等式ax2+bx+c>0的解集是-1<x<5;②a-b+c>0;③b2-4ac>0;④4a+b<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】读句画图:如图所示,ABCD在同一平面内.

1)过点A和点D画直线;

2)画射线CD

3)连接AB

4)连接BC,并反向延长BC

5)已知AB=9,直线AB上有一点F,并且BF=3,则AF=_________

查看答案和解析>>

同步练习册答案