精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,∠BAD60°ACBD交于点OECD延长线上的一点,且CDDE,连结BE分别交ACAD于点FG,连结OG,则下列结论:①OGAB;②与EGD全等的三角形共有5个;③S四边形ODGFSABF;④由点ABDE构成的四边形是菱形.其中正确的是(  )

A.①④B.①③④C.①②③D.②③④

【答案】A

【解析】

AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OGABOG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=SABF;③不正确;即可得出结果.

∵四边形ABCD是菱形,

ABBCCDDAABCDOAOCOBODACBD

∴∠BAG=∠EDGABO≌△BCO≌△CDO≌△AOD

CDDE

ABDE

ABGDEG中,

∴△ABG≌△DEGAAS),

AGDG

OGACD的中位线,

OGCDAB

∴①正确;

ABCEABDE

∴四边形ABDE是平行四边形,

∵∠BCD=∠BAD60°

∴△ABDBCD是等边三角形,

ABBDAD,∠ODC60°

ODAG,四边形ABDE是菱形,

④正确;

ADBE

由菱形的性质得:ABG≌△BDG≌△DEG

ABGDCO中,

∴△ABG≌△DCOSAS),

∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG

∴②不正确;

OBODAGDG

OGABD的中位线,

OGABOGAB

∴△GOD∽△ABDABF∽△OGF

∴△GOD的面积=ABD的面积,ABF的面积=OGF的面积的4倍,AFOF21

∴△AFG的面积=OGF的面积的2倍,

又∵△GOD的面积=AOG的面积=BOG的面积,

S四边形ODGFSABF

③不正确;

正确的是①④.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD为等边△ABC的高,EF分别为线段ADAC上的动点,且AECF,当BF+CE取得最小值时,∠AFB=(  )

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图1﹣﹣图4中,菱形ABCD的边长为3,A=60°,点M是AD边上一点,且DM=AD,点N是折线AB﹣BC上的一个动点.

(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为

(2)当点N在AB边上时,将AMN沿MN翻折得到A′MN,如图2,

①若点A′落在AB边上,则线段AN的长度为

②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;

③当点A′落在对角线BD上时,如图4,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,DAB的中点,EF分别是ACBC上的点(点E不与端点AC重合),连接EF并取EF的中点O,连接DO并延长至点G,使,连接DEGEGF.

1)求证:四边形EDFG是平行四边形;

2)若,探究四边形EDFG的形状?

3)在(2)的条件下,当E点在何处时,四边形EDFG的面积最小,并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:

收费项目

收费标准

3公里以内收费

13元

基本单价

2.3元/公里

……

……

备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。

小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.

下面是小明的探究过程,请补充完整:

记一次运营出租车行驶的里程数为(单位:公里),相应的实付车费为(单位:元).

(1)下表是yx的变化情况

行驶里程数x

0

0<x<3.5

3.5≤x<4

4≤x<4.5

4.5≤x<5

5≤x<5.5

实付车费y

0

13

14

15

(2)在平面直角坐标系中,画出当变化的函数图象;

(3)一次运营行驶公里()的平均单价记为(单位:元/公里),其中.

时,平均单价依次为的大小关系是____________;(用“<”连接)

若一次运营行驶公里的平均单价不大于行驶任意)公里的平均单价,则称这次行驶的里程数为幸运里程数.请在上图中轴上表示出(不包括端点)之间的幸运里程数的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1 m.

(1)AB=________m;

(2)求旗杆MN的高度.(结果保留两位小数)

(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象交点的横坐标为3,则下列结论:

时,中,正确结论的个数是 (  )

A.0B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为等边三角形,点DE分别在BCAC上,AE=CDADBE于点PQ.

1)求证:

2)若,求AD的长.

查看答案和解析>>

同步练习册答案