精英家教网 > 初中数学 > 题目详情
8.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线.

分析 (1)欲证明DB=DE,只要证明∠DBE=∠DEB;
(2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可;

解答 (1)证明:∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE.

(2)连接CD.
∵DA平分∠BAC,
∴∠DAB=∠DAC,
∴$\widehat{BD}$=$\widehat{CD}$,
∴BD=CD,
∵BD=DF,
∴CD=DB=DF,
∴∠BCF=90°,
∴BC⊥CF,
∴CF是⊙O的切线.

点评 本题考查三角形的内切圆与内心、切线的判定、等腰三角形的判定、直角三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:(2a+3b)(a2-2ab)-(9a3b3-12a4b2)÷3ab2.其中a=-1,b=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,在正方形ABCD中,点E,F分别是边AB,BC上的点,且BE=CF.连结CE,DF.将线段FD绕点F逆时针旋转90°,得到线段FG.
(1)依题意将图1补全;
(2)连结EG,请判断:EG与CF的数量关系是EG=CF,位置关系是EG∥CF;并证明你的结论;
(3)当FG经过BE中点时,写出求∠CDF度数的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图抛物线y=ax2+bx+c的图象交x轴于A(-2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b-c=2;②a=$\frac{1}{2}$;③ac=b-1;④$\frac{a+b}{c}$>0
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.
(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1-n)万元.
①A型健身器材最多可购买多少套?
②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列实数中,无理数是(  )
A.0B.$\sqrt{2}$C.-2D.$\frac{2}{7}$

查看答案和解析>>

同步练习册答案