精英家教网 > 初中数学 > 题目详情

【题目】在△ABC 中,ABACD 是直线 BC 上一点(不与点 BC 重合),以 AD 为一边在 AD的右侧作△ADEADAE,∠DAE=∠BAC,连接 CE.

1)如图 1,当点 D 在线段 BC 上时,求证:ABD≌△ACE

2)如图 2,当点 D 在线段 BC 上时,如果∠BAC90°,求∠BCE 的度数;

3)如图 3,若∠BAC=α,∠BCE=β.D 在线段 CB 的延长线上时,则α、β之间有怎样 的数量关系?并证明你的结论.

【答案】1)见解析2903

【解析】1)首先求出∠BAD=CAE,再利用SAS得出ABD≌△ACE即可;

(2)ABAC,BAC90推出∠ABDACB45ABDACE,得到∠ABDACE,等量代换得到∠ABDACE,即可求出∠BCE;

(3)DCB的延长线上时,α=β,求出∠BAD=CAE.推出ADBAEC,推出∠BAC=BCE.根据三角形外角性质求出即可.

(1)∵∠DAE=BAC ,

BAD=EAC

∵在ABDACE中,

AB AC,BAD=CAE,AD=AE,

ABDACE SAS

(2)AB AC,BAC 90

ABDACB 45

ABDACE ,

ABDACE,

ABDACE,

BCEACDACE90

(3)当点D在线段CB的延长线上时,α=β.

理由:∵∠DAE=BAC,

∴∠DAB=EAC,

∵在ADBAEC中,

AD=AE,DAB=EAC,AB=AC,

∴△ADB≌△AEC(SAS),

∴∠ABD=ACE,

∵∠ABD=BAC+ACB,ACE=BCE+ACB,

∴∠BAC=BCE,

α=β.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各数分别填在相应的括号内.

,0,0.16,3,-,-,-3.14

有理数:{____________________________________________________};

无理数:{____________________________________________________};

负实数:{____________________________________________________}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A、B、C、D把一个400米的环形跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4乙平均每秒跑6若甲、乙两人分别从A、C两处同时相向出发(如图),当他们第4次相遇时其相遇点在____________(”AB””BC””CD””DA”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则A2017的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.

(1)分别写出下列各点的坐标:A′ B′ ;C′

(2)说明△A′B′C′由△ABC经过怎样的平移得到?

(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为

(4)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数ykx4的图象经过点(3,-2)

(1)求这个函数的解析式;

(2)画出该函数的图象

(3)判断点(35)是否在此函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知∠AOB=80°,OC是∠AOB内的一条射线,ODOE分别平分∠BOC和∠COA

(1)求∠DOE的度数;

(2)当射线OC绕点O旋转到OB的左侧时如图②(或旋转到OA的右侧时如图③),ODOE仍是∠BOC和∠COA的平分线,此时∠DOE的大小是否和(1)中的答案相同?若相同,请选取一种情况写出你的求解过程;若不相同,请说明理由.

查看答案和解析>>

同步练习册答案