精英家教网 > 初中数学 > 题目详情
如图,在等边△ABC中,点D在边BC上,△ADE为等边三角形,且点E与点D在直线AC的两侧,点F在AB上(不与A,B重合)且∠AFE=∠B,EF与AB,AC分别相交于点F,G.
求证:四边形BCEF是平行四边形.
分析:易证△ABD≌△ACE,则有全等三角形的对应角相等、平行线的判定得到BF∥EC.由于∠AFE=∠B,则EF∥BC.故四边形BCEF为平行四边形.
解答:证明:如图,∵△ABC和△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴在△ABD与△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE(SAS),
∴∠B=∠ACE=60°,
∴∠B+∠ACB+∠ACE=180°,
∴BF∥CE.
又∵∠AFE=∠B,
∴EF∥BC.
∴四边形BCEF为平行四边形.
点评:本题考查了等边三角形的性质、全等三角形的性质与判定及平行四边形的判定,考查的知识点比较多,但难度不算很大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案