精英家教网 > 初中数学 > 题目详情

【题目】为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:

(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;

(2)请补全条形统计图;

(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.

【答案】(1)2000,108;(2)作图见解析;(3)

【解析】

试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;

(2)根据C组的人数,补全条形统计图;

(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.

试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;

(2)条形统计图如下:

(3)画树状图得:

共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,甲、乙两人选择同一种交通工具上班的概率为:=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列调查中,适宜采用全面调查(普查)方式的是  

A. 调查巴南区市民对巴南区创建国家食品安全示范城市的了解情况

B. 调查央视节目《国家宝藏》的收视率

C. 调查我校某班学生喜欢上数学课的情况

D. 调查学校所有电子白板的使用寿命

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:

某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD3

(1)设点A的坐标为(44)则点C的坐标为   

(2)若点D的坐标为(4n)

求反比例函数y的表达式;

求经过CD两点的直线所对应的函数解析式;

(3)(2)的条件下,设点E是线段CD上的动点(不与点CD重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,RtABC中,∠ACB90°,AC5BC12,点D在边AB上,以AD为直径的O,与边BC有公共点E,则AD的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,CO上一点,DBC延长线一点,且BCCDCEAD于点E

1)求证:直线ECO的切线;

2)设BEO交于点FAF的延长线与EC交于点P,已知∠PCF=∠CBFPC5PF3.求:cosPEF的值.

查看答案和解析>>

同步练习册答案