精英家教网 > 初中数学 > 题目详情

【题目】如图,都是由边长为 1 的正方体叠成的立体图形例如第个图形由 1 个正方体叠成,第个图形由 4 个正方体叠成个图形由 10 个正方体叠成依次规律个图形由( )个正方形叠成.

A. 86 B. 87 C. 85 D. 84

【答案】D

【解析】

根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+ ,据此可得第(7)个图形中正方体的个数.

由图可得:
第(1)个图形中正方体的个数为1;
第(2)个图形中正方体的个数为4=1+3;
第(3)个图形中正方体的个数为10=1+3+6;
第(4)个图形中正方体的个数为20=1+3+6+10;
故第n个图形中的正方体的个数为1+3+6+…+
第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB,CD相交于点O,OE平分∠AOD,FO⊥AB,垂足为O,∠BOD=∠DOE.

(1)求BOF的度数;

(2)请写出图中与BOD相等的所有的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点A向右移动1个单位得到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点ABC分别表示有理数abc

1)当n=1时,ABC三点在数轴上的位置如图所示,abc三个数的乘积为正数.

①数轴上原点的位置可能(

A.在点A左侧或在AB两点之间

B.在点C右侧或在AB两点之间

C.在点A左侧或在BC两点之间

D.在点C右侧或在BC两点之间

②若这三个数的和与其中的一个数相等,则a=_________(简述理由)

2)将点C向右移动(n+2)个单位得到点D,点D表示有理数dabcd四个数的积为正数,且这四个数的和与其中的两个数的和相等,a为整数,若n分别取123100时,对应的a的值分别记为,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.

(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE分别是ACAB上的点,BDCE相交于点O,给出下列四个条件:

①∠EBO=∠DCO②∠BEO=∠CDO③BE=CD④OB=OC

1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)

2)选择(1)小题中的一种情形,说明AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年9月,莉莉进入八中初一,在准备开学用品时,她决定购买若干个某款笔记本,甲、乙两家文具店都有足够数量的该款笔记本,这两家文具店该款笔记本标价都是20/个.甲文具店的销售方案是:购买该笔记本的数量不超过5个时,原价销售;购买该笔记本超过5个时,从第6个开始按标价的八折出售:乙文具店的销售方案是:不管购买多少个该款笔记本,一律按标价的九折出售.

(1)若设莉莉要购买xx>5)个该款笔记本,请用含x的代数式分别表示莉莉到甲文具店和乙文具店购买全部该款笔记本所需的费用;

(2)在(1)的条件下,莉莉购买多少个笔记本时,到乙文具店购买全部笔记本所需的费用与到甲文具店购买全部笔记本所需的费用相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电专卖店销售每台进价分别200元、160元的A,B两种型号的电风扇,下表是近两周的销售情况

销售时段

销售数量

销售收入

A 种型号

B种型号

第一周

3

4

1550 元

第二周

4

8

2600 元

(进价、售价均保持不变,利销=销售收入-进货成本)

(1)求A,B两种型号的电风扇的销售单价;

(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?

(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案