精英家教网 > 初中数学 > 题目详情
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
【小题1】求证:△ABE≌△CAD;
【小题2】求∠BFD的度数.

【小题1】见解析。
【小题2】60°解析:
本题重点考查为等边三角形各全等三角形的判定和性质。利用等边三角形特性证明△ABE≌△CAD,然后利用全等性质对应角相等和外角性质求角。
(1) 证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA  (2分)
在△ABE和△CAD中,AB=CA,∠BAE=∠C,AE=CD,   (5分)
∴△ABE≌△CAD                 (6分)
(2)解: ∵∠BFD=∠ABE+∠BAD,            (7分)
又∵△ABE≌△CAD, ∴∠ABE=∠CAD, (8分)
∴∠BFD=∠CAD +∠BAD=∠BAC=60°
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3精英家教网,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.
(1)用m表示点A、D的坐标;
(2)求这个二次函数的解析式;
(3)点Q为二次函数图象上点P至点B之间的一点,且点Q到△ABC边BC、AC的距离相等,连接PQ、BQ,求四边形ABQP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为等边三角形,D,E,F分别在边BC,CA,AB上,且△DEF也是等边三角形,除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC为等边三角形,点D.E分别在BC.AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.

查看答案和解析>>

同步练习册答案