精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);
(2)M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);
(3)结论:在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).

试题分析:(1)令Y=0,X=0就可以得到
根据已知先求得对称轴,由于△MAD的面积与△CAD的面积相等,所以有两种情况,一种是点M在X轴下方,此时点M与点C关于对称轴对称,另一种是点M在X轴上方,由于面积相等,而AD是两个三角形公用的,所以可知点M的纵坐标为3,将Y=3代入解析式就可求得.
分情况讨论,一种是BC、AP为底,此时P点与D点重合;一种是AB、CP为底,此时要先求出AB所在直线的解析式,然后根据互相平行的两直线的K值相等,求出CP的解析式,与二次函数的解析式联立,得到方程组,求解即可得到。
试题解析:(1)∵y=x2x﹣3,∴当y=0时,x2x﹣3=0,
解得x1=﹣2,x2=4.当x=0,y=﹣3.
∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);
(2)∵y=x2x﹣3,∴对称轴为直线x==1.
∵AD在x轴上,点M在抛物线上,
∴当△MAD的面积与△CAD的面积相等时,分两种情况:
①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,
∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);
②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=3时,x2x﹣3=3,解得x1=1+,x2=1﹣
∴M点坐标为(1+,3)或(1﹣,3).
综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);
(3)结论:存在.

如图所示,在抛物线上有两个点P满足题意:
①若BC∥AP1,此时梯形为ABCP1
由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,
∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;
②若AB∥CP2,此时梯形为ABCP2
∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,
∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,
∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2x﹣3上,
x2x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,
∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).
∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.
综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一次函数y=2x-3与二次函数y=x2-2x+1的图象有(  )
A.一个交点B.无数个交点C.两个交点D.无交点

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.
(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是(  )
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,
(1)求二次函数解析式;
(2)若=,求k;
(3)若以BC为直径的圆经过原点,求k.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.

(1)求y2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点A(3,2),B(0,1)和点C
(1)求抛物线的解析式;
(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若,求点F的坐标;
(3)在(2)的条件下,在y轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个函数中,y随x增大而减小的是(  )
A.y=2xB.y=-x2+2x-1
C.y=-
3
x
(x>0)
D.y=x2-2x+1(x<1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点A()在抛物线上,则点A关于抛物线对称轴的对称点坐标为
A.(-3,7)B.(-1,7)C.(-4,10)D.(0,10)

查看答案和解析>>

同步练习册答案