·ÖÎö £¨1£©ÏÈÇó³öC¡äµã×ø±ê£¬½«A¡¢BÁ½µã×ø±ê´úÈëy=a£¨x-3£©2-4¼´¿ÉÇóµÃÅ×ÎïÏßl2µÄº¯Êý¹Øϵʽ£»
£¨2£©ÓɵãÊÇƽÒƹæÂÉ¡¢µãµÄ×ø±êÓëͼÐÎÐÔÖÊÒÔ¼°Æ½ÐÐËıßÐεĶԱßÏàµÈµÄÐÔÖʽøÐнâ´ð£»
£¨3£©ÓÉÌâÒâ¿ÉÖªµãM¡¢N¹ØÓÚÖ±Ïßx=3¶Ô³Æ£¬Õý·½ÐÎMNN¡äM¡äµÄ±ß³¤Îª2|y0|£¬½â·½³ÌÇó³öy0¼´¿ÉÇó³öÏàÓ¦µÄµãMµÄ×ø±ê£®
½â´ð ½â£º£¨1£©Èçͼ1£¬ÓÉÌâÒâÖªµãC¡äµÄ×ø±êΪ£¨3£¬-4£©£®
Éèl¡äµÄº¯Êý¹ØϵʽΪy=a£¨x-3£©2-4£®£¨1·Ö£©
ÓÖÒòΪµãA£¨1£¬0£©ÔÚÅ×ÎïÏßy=a£¨x-3£©2-4ÉÏ£¬
a£¨1-3£©2-4=0£¬½âµÃa=1£®
¡àÅ×ÎïÏßl¡äµÄº¯Êý¹ØϵʽΪy=£¨x-3£©2-4»òy=x2-6x+5£»
£¨2£©Èçͼ2£¬ÒÀÌâÒâ¿ÉµÃ£ºD£¨1+m£¬0£©£¬E£¨5+m£¬0£©£¬F£¨3+m£¬-4£©
¼´M£¬N¹ØÓÚÔµãO¶Ô³Æ£¬
¡àOM=ON£®
¡ßA£¨-1-m£¬0£©£¬E£¨1+m£¬0£©£¬
¡àA£¬E¹ØÓÚÔµãO¶Ô³Æ£¬
¡àOA=OE
¡àËıßÐÎANEMΪƽÐÐËıßÐΣ®
¡ßAC2=£¨3-1£©2+42=20£¬
CE2=£¨5+m-3£©2+42=m2+4m+20£¬
AE2=£¨5+m-1£©2=m2+8m+16£¬
ÈôAC2+CE2=AE2£¬Ôò20+m2+4m+20=m2+8m+16£¬
¡àm=6£¬
´Ëʱ¡÷AMEÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒ¡ÏAME=90¡ã£®
¡àµ±m=6ʱ£¬ÒÔµãA£¬C£¬E£¬FΪ¶¥µãµÄËıßÐÎÊǾØÐΣ®
£¨3£©´æÔÚÂú×ãÌõ¼þµÄµãM¡¢N£®ÓÉÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖª£¬µãM¡¢N¹ØÓÚÖ±Ïßx=3¶Ô³Æ£®
ÉèM£¨x0£¬y0£©£¬ÔòÕý·½ÐÎMNN¡äM¡äµÄ±ß³¤Îª2|y0|£®
¡ßµãMÔÚl2ÉÏ£¬
¡ày0=£¨3-|y0|-3£©2-4£¬
½âµÃy0=$\frac{1¡À\sqrt{17}}{2}$£®
¡àx0=3-|y0|=$\frac{5-\sqrt{17}}{2}$»ò$\frac{7-\sqrt{17}}{2}$£¬
¡àµãMµÄ×ø±êΪ£¨$\frac{5-\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©»ò£¨$\frac{7-\sqrt{17}}{2}$£¬$\frac{1-\sqrt{17}}{2}$£©£®
µãÆÀ ±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĹ«Ê½µÄÇ󷨺ÍƽÐÐËıßÐκÍÕý·½ÐεÄÐÔÖʵÈ֪ʶµã£¬ÊǸ÷µØÖп¼µÄÈȵãºÍÄѵ㣬½âÌâʱעÒâÊýÐνáºÏºÍ·ÖÀàÌÖÂÛµÈÊýѧ˼ÏëµÄÔËÓã¬Í¬Ñ§ÃÇÒª¼ÓǿѵÁ·£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 10×é | B£® | 9×é | C£® | 8×é | D£® | 7×é |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
µØÃû | ʱ¼ä |
Íõ¼Òׯ | 9£º00 |
Çàɽ | 12£º00 |
ÐãË® | 14£º00 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
¹ûÖÒûÁÏ | ̼ËáÒûÁÏ | |
½ø¼Û£¨Ôª/Ï䣩 | 55 | 38 |
ÊÛ¼Û£¨Ôª/Ï䣩 | 75 | 45 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B£® | $\sqrt{£¨-2£©^{2}}$=-2 | C£® | $\sqrt{8}$=2$\sqrt{2}$ | D£® | $\sqrt{6}$¡Â$\sqrt{3}$=2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 3 | B£® | 4 | C£® | 5 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com