精英家教网 > 初中数学 > 题目详情
某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?
分析:①根据价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱,可得y=90-3(x-50);
②根据利润=销量×(售价-进价),列出利润W与x的关系式;
③根据②求出的函数关系式,运用配方法求最大值.
解答:解:①由题意得,y=90-3(x-50)=240-3x(40≤x≤80);

②设利润为W,
则W=y(x-40)=(240-3x)(x-40)
=-3x2+360x-9600(40≤x≤80);

③由②得,W=-3x2+360x-9600=-3(x-60)2+1200,
∵-3<0,
∴W有最大值,
即当x=60时,利润W取最大值1200,
答:当售价为60元时利润最高为1200元.
点评:本题考查的是二次函数在实际生活中的应用,解题时首先正确理解题意,然后根据题目隐含条件列出函数关系式,然后利用二次函数的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元至70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高l元,平均每天少销售3箱.
(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系式.(注明范围) 
 (2)求出商场平均每天销售这种牛奶的利润W(元),与每箱牛奶的售价x(元)之间的二次函数关系式.(每箱的利润=售价-进价)
(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在给出的坐标系中画出函数图象的草图.
(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每升高1元,平均每天少销售3箱.
(1)求商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的函数关系式;(每箱的利润=售价-进价)
(2)求出(1)中二次函数图象的顶点坐标,并当x=40,70时W的值.在直角坐标系中画出函数图象的草图;
(3)根据图象可以看出,当牛奶售价为多少时,平均每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~65元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(1)写出平均每天销售y(箱)与每箱售价x(元)之间的关系式;
(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的关系式(每箱的利润=售价-进价);
(3)当每箱牛奶售价为多少时,平均每天的利润为900元?
(4)当每箱牛奶售价为多少时,平均每天的利润为1200元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售某种品牌的水壶,进价l2元/个,售价20元/个.为了促销,商场决定凡是买10个以上的,每多买一个,售价就降低O.10元(例如.某人买20个水壶,于是每个降价O.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.
(1)求顾客一次至少买多少个,才能以最低价购买?
(2)写出当一次购买x个时(x>10),利润y(元)与购买量x(个)之间的函数关系式;
(3)有一天,一位顾客买了46个,另一位顾客买了50个,商场发现卖了50个反而比卖个赚的钱少,请你说明这是为什么?并计算每次卖多少个时利润最大,这时每个水壶的定价是多少?

查看答案和解析>>

同步练习册答案