精英家教网 > 初中数学 > 题目详情
如图,将一块含30°角的学生用三角板放在平面直角坐标系中,使顶点A、B分别放置在y轴、x轴上,已知AB=2,∠ABO=∠ACB=30°.
(1)求点A、B、C的坐标;
(2)求过A,B,C三点的抛物线解析式;
(3)在(2)中的抛物线上是否存在点P,使△PAB的面积等于△ABC的面积?若不存在,请说明理由;若存在,请你求出点P的坐标.
(1)在Rt△AOB中,∠ABO=30°,AB=2,
则OA=1,OB=
3

∴点A的坐标为(0,1),点B的坐标为(
3
,0),
在Rt△ABC中,AB=2,∠ACB=30°,
则BC=ABcot∠ACB=2
3

过点C作CD⊥x轴于点D,如图所示:

在Rt△BCD中,∠CBD=60°,BC=2
3

则BD=BCsin∠BCD=
3
,CD=
3
BD=3,
故点C的坐标为(2
3
,3).
综上可得点A(0,1),点B(
3
,0),点C(2
3
,3).

(2)设y=ax2+bx+1,
将B(
3
,0),C(2
3
,3)代入可得:
3a+
3
b+1=0
12a+2
3
b+1=3

解得:
a=
2
3
b=-
3

故抛物线解析式为:y=
2
3
x2-
3
x+1.
(3)①当点P与点C重合时,很明显△PAB的面积等于△ABC,此时点P的坐标为(2
3
,3).

②点P与点C不重合时,设直线AB解析式为y=kx+1,
将B(
3
,0)代入可得:
3
k+1=0,
解得:k=-
3
3

∴y=-
3
3
x+1,
过点C作直线AB的平行线,则与抛物线交点为点P的位置,

设直线CP的解析式为y=-
3
3
x+m,
将C(2
3
,3)代入可得:3=-
3
3
×2
3
+m,
解得:m=5,
∴直线CP的解析式为y=-
3
3
x+5,
联立抛物线与直线CP的解析式:
y=-
3
3
x+5
y=
2
3
x2-
3
x+1

解得:
x1=2
3
y1=3
x2=-
3
y2=6

故此时点P的坐标为(-
3
,6).
综上可得点P的坐标为(2
3
,3)或(-
3
,6).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴的正半轴交于点C,顶点为E.
(1)求抛物线解析式及顶点E的坐标;
(2)如图,过点E作BC平行线,交x轴于点F,在不添加线和字母情况下,图中面积相等的三角形有:______;
(3)将抛物线向下平移,与x轴交于点M、N,与y轴的正半轴交于点P,顶点为Q.在四边形MNQP中满足S△NPQ=S△MNP,求此时直线PN的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两条抛物线y1=-
1
2
x2+1,y2=-
1
2
x2-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为(  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积;
(3)若P是抛物线对称轴上一个动点,求当PA+PC的值最小时P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).

(1)如图1,当AB=______m,BC=______m时,所围成两间鸭舍的面积最大,最大值为______m2
(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?

查看答案和解析>>

同步练习册答案