精英家教网 > 初中数学 > 题目详情
如图,已知点B、C、D、E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,则∠E=______.
∵△ABC是等边三角形,
∴∠ACB=60°,∠ACD=120°,
∵CG=CD,
∴∠CDG=30°,∠FDE=150°,
∵DF=DE,
∴∠E=15°.
故答案为:15°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知:点P是等边△ABC内任意一点,它到三边的距离分别为h1、h2、h3,且满足h1+h2+h3=6,则S△ABC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠C=90°,∠B=60°,AC=4,等边△DEF的一边在直角边AC上移动,当点E与点C重合时,点D恰好落在AB边上,
(1)求等边△DEF的边长;
(2)请你探索,在移动过程中,线段CE与图中哪条线段始终保持相等,并说明理由;
(3)若设线段CE为x,在移动过程中,等边△DEF与Rt△ABC两图形重叠部分的面积为y.请你写出y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在等边三角形ABC的边BA,CB,AC的延长线上分别截取AA′=BB′=CC′,那么△A′B′C′是______三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABC和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN,试判断△BMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC为等边三角形,AB=6,P是AB上的一个动点(与A、B不重合),过点P作AB的垂线与BC相交于点D,以点D为正方形的一个顶点,在△ABC内作正方形DEFG,其中D、E在BC上,F在AC上,
(1)设BP的长为x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域;
(2)当BP=2时,求CF的长;
(3)△GDP是否可能成为直角三角形?若能,求出BP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

附加题,学完“几何的回顾”一章后,老师布置了一道思考题:
如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…
请你作出判断,在下列横线上填写“是”或“否”:①______;②______;③______.并对②,③的判断,选择一个给出证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等边三角形的边长为4,则其面积为______.

查看答案和解析>>

同步练习册答案