已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,BE=2,求∠F的度数.
(1)证明见解析;(2)∠F=30°.
【解析】
试题分析:(1)如图,连结OD.欲证DE是⊙O的切线,只需证得OD⊥ED;
(2)求出AE,证△AED∽△DEB,求出DE,解直角三角形求出∠B=60°=∠ACB,根据三角形外角性质求出即可.
试题解析:(1)如图,连接OD,AD.
∵AC是直径,
∴AD⊥BC,
又∵在△ABC中,AB=AC,
∴∠BAD=∠CAD,∠B=∠C,BD=CD,
∵AO=OC,
∴OD∥AB,
又∵DE⊥AB,
∴DE⊥OD,
∵OD为⊙O半径,
∴DE是⊙O的切线;
(2)∵⊙O的半径为4,AB=AC,
∴AC=AB=4+4=8,
∵BE=2,
∴AE=8﹣2=6,
∵DE⊥AB,AD⊥BC,
∴∠AED=∠BED=∠ADB=90°,
∴∠DAE+∠ADE+∠BDE=90°,
∴∠DAE=∠BDE,
∵∠AED=∠BED,
∴△AED∽△DEB,
∴,
∴,
解得:DE=2,
在Rt△BED中,tanB=,
∴∠B=60°,
∴∠CDF=∠EDB=30°,
∵AB=AC,
∴∠B=∠ACB=60°,
∴∠F=∠ACB﹣∠CDF=60°﹣30°=30°.
考点:切线的判定.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com