精英家教网 > 初中数学 > 题目详情
等腰梯形ABCD中,AD=2,BC=4,高DF=2,则腰CD长是
5
5
分析:先过A作AE⊥BC于E,证平行四边形ADFE和△AEB≌△DFC,推出EF=AD,AE=DF,求出CF长,根据勾股定理即可求出CD的长.
解答:解:过A作AE⊥BC于E,
∵DF⊥BC,
∴∠AEB=∠DFC=90°,DF∥AE,
∵AD∥BC,
∴四边形ADFE是平行四边形,
∴AD=EF=2,AE=DF,
∵AD∥BC,AB=CD,
∴∠B=∠C,
∵AE=DF,∠AEB=∠DFC,
∴△AEB≌△DFC,
∴BE=CF=
1
2
(BC-AD)=1,
在△DFC中,由勾股定理得:DC=
DF2+CF2
=
22+12
=
5

故答案为:
5
点评:本题主要考查了等腰梯形的性质,用到的知识点是平行四边形的性质和判定,全等三角形的性质和判定,勾股定理,综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,则梯形ABCD的面积是
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分别为对角线AC、DB的中点,且EF=4.求这个梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)如图,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的长.
(2)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案