【题目】如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若DBC=30,CD=4,求四边形ABED的面积.
【答案】(1)证明见试题解析;(2).
【解析】
试题分析:(1)先根据两组对边分别平行证明四边形ABEC 是平行四边形,再根据平行四边形的性质和矩形的性质可以证得BD=BE.(2) 四边形ABED是梯形,本题关键是求出高BC,再根据梯形面积公式求出答案为.
试题解析:(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD ,又BE ∥AC , ∴四边形ABEC 是平行四边形 ,∴BE= AC ,∴BD=BE ,(2)∵四边形ABCD是矩形 , 四边形ABEC 是平行四边形,∴AB=DC=CE=4,在Rt △DBC 中,∠DBC=30°, ,即,解得,∵AB∥DE ,AD与BE不平行,∴四边形ABED是梯形,且BC为梯形的高,
∴四边形ABED的面积.
考点:①解直角三角形;②平行四边形的性质;③矩形的性质与判定.
科目:初中数学 来源: 题型:
【题目】如图所示,在平行四边形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法正确的是( )
①BE=CF ②AE是∠DAB的角平分线 ③∠DAE+∠DCF=120°.
A. ① B. ①② C. ①②③ D. 都不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(3,4).
(Ⅰ)如图①,过点A作AB⊥x轴,垂足为B,则三角形AOB的面积为 ;
(Ⅱ)如图②,将点A向右平移1个单位长度,再向下平移2个单位长度,得到点A′,若P是坐标轴上的一点,要使三角形POA′的面积等于三角形OAA′的面积的4倍,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )
A.ED∥BC
B.ED⊥AC
C.∠ACE=∠BCE
D.AE=CE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:
穗长x | 频数 |
4.0≤x<4.3 | 1 |
4.3≤x<4.6 | 1 |
4.6≤x<4.9 | 2 |
4.9≤x<5.2 | 5 |
5.2≤x<5.5 | 11 |
5.5≤x<5.8 | 15 |
5.8≤x<6.1 | 28 |
6.1≤x<6.4 | 13 |
6.4≤x<6.7 | 11 |
6.7≤x<7.0 | 10 |
7.0≤x<7.3 | 2 |
7.3≤x<7.6 | 1 |
(Ⅰ)补全直方图;
(Ⅱ)共抽取了麦穗 棵;
(Ⅲ)频数分布表的组距是 ,组数是 ;
(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乘法公式的探究与应用:
(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)
(4)运用你所得到的公式计算:10.3×9.7.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第100次运动后,动点P的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有理数a、b在数轴上的对应点如图所示.
(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;
(2)已知有理数a、b,计算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com