|
(1) |
因为AB=AC,所以∠B=∠ACB,所以∠B= 又∠BNM=90°,所以∠NMB=90°-∠B=90°-70°=20°. |
(2) |
同理可求得∠NMB=35°. |
(3) |
猜想规律:等腰三角形一腰的垂直平分线与底边或底边的延长线的夹角等于顶角的一半,即∠NMB= 证明:设∠A=α. 因为AB=AC,所以∠B=∠C= 因为∠BNM=90°,所以∠NMB=90°-∠B=90°- |
(4) |
由(3)中的证明知:若将(1)中的∠A改为钝角,这个规律仍然成立,不必修改. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com