精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线y=-
2
3
x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.
(1)解法一:∵抛物线y=-
2
3
x2+bx+c经过点A(0,-4),
∴c=-4
又∵由题意可知,x1、x2是方程-
2
3
x2+bx+c=0的两个根,
∴x1+x2=
3
2
b,x1x2=-
3
2
c
由已知得(x2-x12=25
又∵(x2-x12=(x2+x12-4x1x2
=
9
4
b2-24
9
4
b2-24=25
解得b=±
14
3

当b=
14
3
时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.
∴b=-
14
3

解法二:∵x1、x2是方程-
2
3
x2+bx+c=0的两个根,
即方程2x2-3bx+12=0的两个根.
∴x=
3b±
9b2-96
4

∴x2-x1=
9b2-96
2
=5,
解得b=±
14
3

当b=
14
3
时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.
∴b=-
14
3


(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上,
又∵y=-
2
3
x2-
14
3
x-4=-
2
3
(x+
7
2
2+
25
6

∴抛物线的顶点(-
7
2
25
6
)即为所求的点D.

(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),根据菱形的性质,点P必是直线x=-3与
抛物线y=-
2
3
x2-
14
3
x-4的交点,
∴当x=-3时,y=-
2
3
×(-3)2-
14
3
×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形.
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC,过A、B、C三点的抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠AOB=45°,过OA上到点O的距离分别为1,2,3,4,5 …的点作OA的垂线与OB相交,再按一定规律标出一组如图所示的黑色梯形.设前n个黑色梯形的面积和为Sn
n123
Sn
(1)请完成上面的表格;
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过A、C两点的抛物线y=x2+bx+c上有一点M,已知A(-1,0),C(0,-2),
(1)这个抛物线的解析式为______;
(2)作⊙M与直线AC相切,切点为C,则M点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A(3,0),B(8,0),与y轴交于点C,且AC平分∠OCB,直线l是它的对称轴.
(1)求直线l和抛物线的解析式;
(2)直线BC与l相交于点D,沿直线l平移直线BC,与直线l,y轴分别交于点E,F,探究四边形CDEF为菱形时点E的坐标;
(3)线段CB上有一动点P,从C点开始以每秒一个单位的速度向B点运动,PM⊥BC,交线段CA于点M,记点P运动时间为t,△CPO与△CPM的面积之差为y,求y与t(0<t≤6)之间的关系式,并确定在运动过程中y的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D、M两点.
(1)求此抛物线的解析式;
(2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一个长为2米的长方形铁片,要把它制成一个开口的水槽.
(1)方案甲,如果做成一个底边长为1米,两边高都为0.5米开口长方形水槽,求水槽的横截面面积.
(2)方案乙,如图把铁片制成等腰梯形水槽,使∠ABC=∠BCD=120°.设BC=2xcm,梯形ABCD(水槽的横截面)的面积为ycm2,试写出y关于x的函数关系式以及自变量x的取值范围,并求出y的最大值;
(3)你能找到一种使水槽的横截面面积比方案乙中的y更大的设计方案吗?若能,请画出图形,标出必要的数据(可不写解答过程),写出你所设计方案的横截面面积;若不能,请说明理由.

查看答案和解析>>

同步练习册答案