精英家教网 > 初中数学 > 题目详情

【题目】正五边形广场 的边长为 米,甲、乙两个同学做游戏,分别从 两点处同时出发,沿 的方向绕广场行走,甲的速度为 ,乙的速度为 ,则两人第一次刚走到同一条边上时( )

A. 甲在顶点 B. 甲在顶点 C. 甲在顶点 D. 甲在顶点

【答案】D

【解析】

实际应用问题,见详解.

解:两人如果在同一条边上,说明两人的距离小于等于80米,

甲、乙两个同学做游戏,分别从 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80(50-46)=20分钟,

20分钟甲走了1000米,正好走到CD的中点设为F;20分钟乙走920米走到DE距D点40米处设为G.

甲从F走到D是40比50等于0.8分钟;乙用0.8分从G点走出0.8乘46等于36.8米距E点80-36.8-40=3.2米

由此得知甲走到D点时乙走在DE线上距E3.2米处.

∴D选项是正确的

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学团委会开展书法、诵读、演讲、征文四个项目(每人只参加一个项目)的比赛,初三(1)班全体同学都参加了比赛,为了解比赛的具体情况,小明收集整理数据后,绘制了以下不完整的折线统计图和扇形统计图,根据图表中的信息解答下列各题:
(1)初三(1)班的总人数为 , 扇形统计图中“征文”部分的圆心角度数为度;
(2)请把折线统计图补充完整;
(3)平平和安安两个同学参加了比赛,请用“列表法”或“画树状图法”,求出他们参加的比赛项目相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图①,ABCD,点E在直线ABCD之间,连结AE、BE,试说明∠BEE+DCE=AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):

解:如图①,过点EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+FGC+DCE=360°;

(应用)点E、F、G在直线ABCD之间,连结AE、EF、FGCG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船从点 A 向正北方向航行,每小时航行 15 海里,小岛P 在轮船的北偏西 15°,3 小时后轮船航行到点 B,小岛 P 此时在轮船的北偏西 30°方向,在小岛 P 的周围 20 海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.
(1)如图1,点A(﹣1,0).
①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为
②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为
③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为
(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y= x(x≥0)上,b的取值范围是
(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y= x+1的二次对称点,且点N'在y轴上,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB、CD、EF相交于点O,OGCD,BOD=36°.

(1)求∠AOG的度数;

(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数的图象经过点(-3,-2).

(1)求这个函数表达式;

(2)判断(-5,3)是否在这个函数的图象上

(3)M在直线y=kx+4上且到y轴的距离是3,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国古代有二十四节气歌,“春雨惊春清谷天,夏满芒夏暑相连.秋处露秋寒霜降,冬雪雪冬小大寒.”它是为便于记忆我国古时历法中二十四节气而编成的小诗歌,流传至今.节气指二十四时节和气候,是中国古代订立的一种用来指导农事的补充历法,是中国古代劳动人民长期经验的积累和智慧的结晶.其中第一个字“春”是指立春,为春季的开始,但在气象学上的入春日是有严格定义的,即连续5天的日平均气温稳定超过10℃又低于22℃,才算是进入春天,其中,5天中的第一天即为入春日.例如:2014年3月13日至18日,北京的日平均气温分别为9.3℃,11.7℃,12.7℃,11.7℃,12.7℃和12.3℃,即从3月14日开始,北京日平均气温已连续5天稳定超过10℃,达到了气象学意义上的入春标准.因此可以说2014年3月14日为北京的入春日. 日平均温度是指一天24小时的平均温度.气象学上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数.
如表是北京顺义2017年3月28日至4月3日的气温记录及日平均气温(单位:℃)

时间

2时

8时

14时

20时

平均气温

3月28日

6

8

13

11

9.5

3月29日

7

6

17

14

a

3月30日

7

9

15

12

10.8

3月31日

8

10

19

13

12.5

4月1日

8

7

18

15

12

4月2日

11

7

22

16

14

4月3日

13

11

21

17

15.5

根据以上材料解答下列问题:
(1)求出3月29日的日平均气温a;
(2)采用适当的统计图将这7天的日平均气温的变化情况表示出来;
(3)请指出2017年的哪一天是北京顺义在气象学意义上的入春日.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB交双曲线 于A,B两点,交x轴于点C,且BC= AB,过点B作BM⊥x轴于点M,连结OA,若OM=3MC,SOAC=8,则k的值为多少?

查看答案和解析>>

同步练习册答案