分析 (1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;
(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;
(3)根据图形,即可直接求得答案.
解答 解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,
再把x=t,y=0代入y=x2+bx,得t2+bt=0,
∵t>0,
∴b=-t;
(2)不变.
∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,
∴当x=1时,y=1-t,
∴M(1,1-t),
∴AM=|1-t|=t-1,
∵OP=t,
∴AP=t-1,
∴AM=AP,
∵∠PAM=90°,
∴∠AMP=45°;
(3)$\frac{7}{2}$<t<$\frac{11}{3}$.
①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;
②左边3个好点在抛物线上方,右边3个好点在抛物线下方:
则有-4<y2<-3,-2<y3<-1即-4<4-2t<-3,-2<9-3t<-1,$\frac{7}{2}$<t<4且$\frac{10}{3}$<t<$\frac{11}{3}$,解得$\frac{7}{2}$<t<$\frac{11}{3}$;
③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;
④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;
⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;
综上所述,t的取值范围是:$\frac{7}{2}$<t<$\frac{11}{3}$.
点评 此题考查了二次函数与点的关系,以及三角形面积的求解方法等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应..
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com