精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+2x+t与x轴的两个交点分别为(x1,0)、(x2,0),且x13+2x12+tx1-3x1-3x2-t=7,该二次函数与双曲线y=
k
x
的交点为(1,d)

(1)t与k的值;
(2)已知点P1,P2,…,Pn都在双曲线y=
k
x
(x>0)
上,它们的横坐标分别为a,2a,…,na,O为坐标原点,记S1=SP1P2O,S2=SP1P3O,…,Sn=SP1Pn+1O,求Sn.(用含n的代数式表示).
分析:(1)将x13+2x12+tx1-3x1-3x2-t=7变形得:x1(x12+2x1+t)-3(x1+x2)-t=7,又由x1,x2是方程x2+2x+t=0的两根,即可得:x12+2x1+t=0,x1+x2=-2,则解方程组,即可求得t的值,则可得k的值,问题的解;
(2)由点P1,P2,Pn都在反比例函数y=
2
x
(x>0)
上,且横坐标分别为a,2a,na,则可求得点P1,P2,Pn的纵坐标,过点P1作P1A⊥x轴于点A,交OPn+1于点C,即可求得点C的坐标,利用三角形的面积间的关系,即可求得Sn的值.
解答:精英家教网解:(1)由x13+2x12+tx1-3x1-3x2-t=7得:
∴x1(x12+2x1+t)-3(x1+x2)-t=7(﹡),
又∵x1,x2是方程x2+2x+t=0的两根,
∴x12+2x1+t=0,x1+x2=-2代入(﹡)式得:x10-3×(-2)-t=7,
∴t=-1,
∴y=x2+2x-1,将(1,d)代入得,d=2,
∴k=2,
y=
2
x


(2)∴点P1,P2,Pn都在反比例函数y=
2
x
(x>0)
上,且横坐标分别为a,2a,na,
∴点P1,P2,Pn的纵坐标分别为
2
a
2
2a
2
na

过点P1作P1A⊥x轴于点A,交OPn+1于点C,
过点Pn+1作Pn+1B⊥y轴于点B,
易求lOPn+1y=
2
(n+1)2a2
x

∴C为(a,
2a
(n+1)2a2
),
∴P1C=
2
a
-
2a
(n+1)2a2
=
2n(n+2)
(n+1)2a 

SP1Pn+1O=
1
2
×OB×P1C=
1
2
(n+1)a•
2n(n+2)
(n+1)2a
=
n2+2n
n+1

Sn=
n2+2n
n+1
点评:此题考查了反比例函数的性质,待定系数法求反比例函数的解析式以及反比例函数的几何意义等知识.此题难度较大,注意数形结合思想与方程思想的应用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案