精英家教网 > 初中数学 > 题目详情
(2007•长春)在北方冬季,对某校一间坐满学生、门窗关闭的教室中CO2的总量进行检测,部分数据如下:
教师连续使用时间x(分)5101520
CO2总量y( )0.61.11.62.1
经研究发现,该教室空气中CO2总量y(m3)是教室连续使用时间x(分)的一次函数.
(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)根据有关资料推算,当该教室空气中CO2总量达到6.7m3时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适;
(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO2的总量减少到0.1m3,求开门通风时教室空气中CO2平均每分钟减少多少立方米?
【答案】分析:(1)从表格中任取两点代入方程后,解方程组即可;
(2)根据(1)的函数解析式可知y=0.1x+0.1中,把y=6.7代入可求出x的值.
(3)依题意,当x=45时,y=4.6,然后利用(4.6-0.1)/5求解.
解答:解:(1)设y=kx+b(b≠0),
由已知,得
解得,∴y=0.1x+0.1.(2分)

(2)在y=0.1x+0.1中,当y=6.7时,x=66(分).
答:该教室连续使用66分钟学生将会开始稍感不适.

(3)∵当x=45时,y=4.6,
(立方米).
答:开门通风时教室空气中CO2的总量平均每分钟减少0.9立方米.
点评:本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2007•长春)如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-(x<0)的图象于B,交函数y=(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

查看答案和解析>>

科目:初中数学 来源:2010年广东省梅州市数学总复习测试卷(4) 函数(解析版) 题型:解答题

(2007•长春)如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-(x<0)的图象于B,交函数y=(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

查看答案和解析>>

科目:初中数学 来源:2007年吉林省长春市中考数学试卷(解析版) 题型:解答题

(2007•长春)如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当时,y最大(小)值=.)

查看答案和解析>>

科目:初中数学 来源:2007年吉林省长春市中考数学试卷(解析版) 题型:解答题

(2007•长春)在北方冬季,对某校一间坐满学生、门窗关闭的教室中CO2的总量进行检测,部分数据如下:
教师连续使用时间x(分)5101520
CO2总量y( )0.61.11.62.1
经研究发现,该教室空气中CO2总量y(m3)是教室连续使用时间x(分)的一次函数.
(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)根据有关资料推算,当该教室空气中CO2总量达到6.7m3时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适;
(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO2的总量减少到0.1m3,求开门通风时教室空气中CO2平均每分钟减少多少立方米?

查看答案和解析>>

同步练习册答案