【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
(2)画出△ABC绕点A按逆时针旋转90°后的△AB2C2 , 并写出点C的对应点C2的坐标.
【答案】
(1)
解:如图所示,△A1B1C1即为△ABC关于y轴对称的图形;
则B1的坐标是(3,3)
(2)
解:△ABC绕点A按逆时针旋转90°后的△AB2C2是:
则点C的对应点C2的坐标是(﹣3,﹣4)
【解析】(1)补充成网格结构,然后找出点A、B、C关于y轴的对称点A1、B1、C1的位置,再顺次连接即可;再根据平面直角坐标系写出点B1的坐标;(2)根据旋转的性质画出△ABC绕点A按逆时针方向旋转90°后的△AB2C2 , 写出点C2的坐标即可.
【考点精析】根据题目的已知条件,利用作轴对称图形的相关知识可以得到问题的答案,需要掌握画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线.
科目:初中数学 来源: 题型:
【题目】下列语句中不正确的是( )
A.同一平面内,不相交的两条直线叫做平行线
B.在同一平面内,过一点有且只有一条直线与己知直线垂直
C.如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等
D.角是轴对称图形,它的角平分线是对称轴
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把分子为1的分数叫做单位分数,如, , ,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如, , ,…
(1)根据对上述式子的观察,你会发现,则a=________,b=________;
(2)进一步思考,单位分数(n是不小于2的正整数),则x=________(用n的代数式表示)
(3)计算: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(请在括号里注明重要的推理依据)
如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:
价格 | 进价(元/箱) | 售价(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若该商行进贷款为1万元,则两种水果各购进多少箱?
(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的 ,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系________;
(2)如图2,过点B作BD⊥AM于点D,试说明:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E在DM上,且BE平分∠DBC,试说明∠ABE=∠AEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣ x2﹣3x﹣ ,设自变量的值分别为x1 , x2 , x3 , 且﹣3<x1<x2<x3 , 则对应的函数值y1 , y2 , y3的大小关系是( )
A.y1>y2>y3
B.y1<y2<y3
C.y2>y3>y1
D.y2<y3<y1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com