精英家教网 > 初中数学 > 题目详情
16.已知a、b是一元二次方程x2-x-2018=0的两个实数根,则代数式a2-2a-b的值等于2017.

分析 先根据一元二次方程解的定义得到a2=a+2018,所以a2-2a-b化简为-(a+b)+2018,再利用根与系数的关系得到a+b=1,然后利用整体代入的方法计算.

解答 解:∵a为方程x2-x-2018=0的根,
∴a2-a-2018=0,
即a2=a+2018,
∴a2-2a-b=a+2018-2a-b=-(a+b)+2018,
∵a、b是一元二次方程x2-x-2018=0的两个实数根,
∴a+b=1,
所以原式=-1+2018=2017.
故答案为2017.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.也考查了一元二次方程解的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,正方形ABCD的面积为2$\sqrt{5}$cm2,对角线交于点O1,以AB、AO1为邻边做平行四边形AO1C1B,对角线交于点O2,以AB、AO2为邻边做平行四边形AO2C2B,…,以此类推,则平行四边形AO6C6B的面积为$\frac{\sqrt{5}}{{2}^{5}}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某校准备组织师生共80人,从温州乘坐动车前往雁落山参加夏令营活动,教师按成人票价购买,学生按学生票价购买,动车票价格如表所示:
运行区间成人票价(元/张)学生票价(元/张)
出发站终点站一等座二等座二等座
温州南雁落山262216
若师生均购买二等座票,则共需1370元.
(1)参加活动的教师和学生各有多少人;
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:m(m-2)-(m-1)2+m,其中m=-$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则$\frac{b-5}{a}$=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若分式$\frac{{x}^{3}-3{x}^{2}+2x}{x-1}$的值为零,则x=0或2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.
(1)已知某天售出该化工原料40千克,则当天的销售单价为50元/千克;
(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.
①求这种化工原料的进价;
②若公司每天的纯利润(收入-支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若抛物线y=x2-4x+2-t(t为实数)在0<x<$\frac{5}{2}$的范围内与x轴有公共点,则t的取值范围为(  )
A.-2<t<2B.-2≤t<2C.-$\frac{7}{4}$<t<2D.t≥-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为${y}_{1}=\left\{\begin{array}{l}{{k}_{1}x(0≤x<600)}\\{{k}_{2}x+b(600≤x≤1000)}\end{array}\right.$,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

同步练习册答案