精英家教网 > 初中数学 > 题目详情
已知抛物线y=-x2+mx+(7-2m)(m为常数).
(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;
(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交了轴的正半轴于C,求抛物线的解析式.
分析:(1)要证明抛物线与x轴恒有两个不同的交点证明抛物线的判别式是正数,所以证明判别式是正数即可解决问题;
(2)首先由AB=4可以得|x2-x1|=4,而(x2-x12=(x2-x12-4x1x2=16,然后利用根与相似的关系即可得到关于m方程,解方程即可求出m,也就求出了抛物线的解析式.
解答:解:(1)证明:∵△=m2-4×(-1)(7-2m)
=m2-8m+28
=(m-4)2+12>0,
∴抛物线与x轴恒有两个不同的交点;

(2)解:由AB=4得|x2-x1|=4,
∴(x2-x12=16,
即(x2+x12-4x1x2=16,
由根与系数关系得(-m)2-4•(
7-2m
-1
)=16,
即m2-8m+12=0
解得m=2或m=6,
∵抛物线交y轴的正半轴于C
∴7-2m>0,
∴m<
7
2

∴m=6舍去,
即m=2,
∴抛物线的解析式为y=-x2+2x+3.
点评:此题主要考查了抛物线与x轴的交点个数与判别式之间的关系,也利用了一元二次方程的根与系数的关系解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案