精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+c(a≠0)的图象经过点A(1,-1),B(2,5),
(1)求函数y=ax2+c的表达式.
(2)若点C(-2,m),D(n,7)也在函数的图象上,求点C的坐标;点D的坐标.
(1)将A(1,-1),B(2,5)代入y=ax2+c得:
a+c=-1
4a+c=5

解得:
a=2
c=-3

则二次函数解析式为y=2x2-3;

(2)将x=-2,y=m代入二次函数解析式得:y=m=5,即C(5,-2);
将x=n,y=7代入二次函数解析式得:7=2n2-3,即n=±
5
,即D(
5
,7)或(-
5
,7).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-
1
3
x+2
与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN-CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-
1
2
x2+mx+n的图象与y轴交于点N,其顶点M在直线y=-
3
2
x上运动,O为坐标原点.

(1)当m=-2时,求点N的坐标;
(2)当△MON为直角三角形时,求m、n的值;
(3)已知△ABC的三个顶点的坐标分别为A(-4,2),B(-4,-3),C(-2,2),当抛物线y=-
1
2
x2+mx+n在对称轴左侧的部分与△ABC的三边有公共点时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,B(1,0),C(0,-3).
(1)求二次函数y=ax2+bx+c(a≠0)的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),抛物线y=ax2-3ax+b经过A(-1,0),C(3,-4)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线L:y=kx+1(k≠0)将四边形ABCD的面积分成相等的两部分,求直线L的解析式;
(3)如图(2),过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNT(点M、N、T分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某地一古城墙门洞呈抛物线形,已知门洞的地面宽度AB=12米,两侧距地面5米高C、D处各有一盏路灯,两灯间的水平距离CD=8米,求这个门洞的高度.(提示:选择适当的位置为原点建立直角坐标系,例如图:以AB的中点为坐标原点建立直角坐标系.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2-3x+4和抛物线y=x2-3x-4相交于A,B两点.点P在抛物线C1上,且位于点A和点B之间;点Q在抛物线C2上,也位于点A和点B之间.
(1)求线段AB的长;
(2)当PQy轴时,求PQ长度的最大值.

查看答案和解析>>

同步练习册答案