【题目】如图1所示,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y-10|+|2x-y|=0,试分别求出1秒钟后△AOB的面积;
(2)如图2,所示,设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图3所示,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,设∠AGH=α,∠BGC=β,试探究出α和β满足的数量关系并给出证明.
【答案】(1)1秒钟后△AOB的面积=4;(2)点A、B在运动的过程中,∠P的大小不变,∠P=45°,理由见解析;(3)α=β,理由见解析.
【解析】
(1)解二元一次方程组求出x、y,得到OA、OB的长,根据三角形的面积公式计算,得到答案;
(2)根据角平分线的定义得到∠PAB=∠EAB,∠PBA=∠FBA,根据三角形内角和定理计算即可;
(3)作GM⊥BF于点M,根据三角形的外角性质、直角三角形的性质计算.
(1)由题意得,,
解得, ,
由题意得,1秒钟后OA=2,OB=4,
则1秒钟后△AOB的面积= ×2×4=4;
(2)点A、B在运动的过程中,∠P的大小不变,∠P=45°,
理由如下:∵∠AOB=90°
∴∠OAB+∠OBA=90°
∴∠EAB+∠FBA=270°,
∵AP平分∠EAB,
∴∠PAB=∠EAB,
同理,∠PBA=∠FBA,
∴∠PAB+∠PBA=(∠EAB+∠FBA)=135°,
∴∠P=180°-135°=45°;
(3)α=β,
理由如下:作GM⊥BF于点M,
∠AGH=90°- ∠EAC
=90°- (180°-∠BAC)
= ∠BAC,
∠BGC=∠BGM-∠CGM
=90°-∠ABC-(90°-∠ACF)
= (∠ACF-∠ABC)
= ∠BAC
∴∠AGH=∠BGC,即α=β.
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E, ∠ABC = 72°,∠C:∠ADB =2:3,求∠BAC 和∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB、CD相交于点O,若BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,∠A=45°,∠BEC=40°,则∠D的度数为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②△ABD为等腰三角形;③∠ADC=120°;④BE2+DC2=DE2,其中正确的有( )个
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B、C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.
(1)若∠AED=30°,则∠ADB=_______°.
(2)求证:△BED≌△CDF
(3)点D在BC边上从B至C的运动过程中,△BED周长变化规律为( )
A.不变 B.一直变小 C.先变大后变小 D.先变小后变大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,分别以AC,BC为边长,在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,则EF=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:
物体的质量(kg) | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧的长度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 |
则下列说法错误的是( )
A.弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量
B.如果物体的质量为x kg,那么弹簧的长度y cm可以表示为y=12+0.5x
C.在弹簧能承受的范围内,当物体的质量为7kg时,弹簧的长度为16cm
D.在没挂物体时,弹簧的长度为12cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB-BC-CD-DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com