精英家教网 > 初中数学 > 题目详情
精英家教网如图,正比例函数y=
32
x
与二次函数y=-x2+2x+c的图象都经过点A(2,m).
(1)求这个二次函数的解析式;
(2)求这个二次函数图象顶点P的坐标和对称轴;
(3)若二次函数图象的对称轴与正比例函数的图象相交于点B,与x轴相交于点C,点Q是x轴的正半轴上的一点,如果△OBC与△OAQ相似,求点Q的坐标.
分析:(1)先求得m,再将点A的坐标代入二次函数y=-x2+2x+c,即可得出c,
(2)根据二次函数对称轴和顶点坐标的求法即可得出答案;
(3)设Q(x,o)(x>0).当x=1时求出点B、C的坐标,再由△OBC∽△OAQ和△OBC∽△OQA时,分别求得点Q的坐标即可.
解答:解:(1)∵正比例函数y=
3
2
x
与二次函数y=-x2+2x+c的图象都经过点A(2,m)
m=
3
2
×2,m=3
(1分)
∴A(2,3),3=-4+4+c
∴c=3(1分)
∴这个二次函数的解析式是y=-x2+2x+3(1分)

(2)y=-x2+2x+3=-(x-1)2+4(1分)
∴这个二次函数图象顶点P的坐标是(1,4),对称轴是直线x=1;(2分)

(3)设Q(x,o)(x>0).当x=1时,y=
3
2
x=
3
2

B(1,
3
2
),c(1,0)
(1分)
当△OBC∽△OAQ时,有
OC
OQ
=
BC
QA
,得OQ=2,Q(2,0)(2分)
当△OBC∽△OQA,有
OB
OQ
=
OC
OA
,得OQ=
13
2
,Q(
13
2
,0)
(2分)
∴点Q的坐标是(2,0),(
13
2
,0)
.(1分)
点评:本题是一道二次函数的综合题,考查了用待定系数法求二次函数的解析式、以及对称轴和顶点坐标的求法,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则(  )
A、S=1B、S=2
C、S=3D、S的值不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
5x
的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)求反比例函数的解析式;
(2)试求出点A、点B的坐标;
(3)在y轴上求一点P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正比例函数y=k1x的图象与反比例函数y=
k2x
的图象相交于点A、B,点A 在第一象限,且点A 的横坐标为1,作AH垂直于x轴,垂足为点H,S△AOH=1.
(1)求AH的长;
(2)求这两个函数的解析式;
(3)如果△OAC是以OA为腰的等腰三角形,且点C在x轴上,求点C的坐标.

查看答案和解析>>

同步练习册答案