分析 (1)由于已知抛物线与x的两交点坐标,则可设交点式y=a(x+3)(x-1),然后把C(0,3)代入求出a的值即可.
(2)利用配方法求该抛物线的顶点坐标和对称轴.
解答 解:(1)设抛物线解析式为y=a(x+3)(x-1)(a≠0).
把C(0,3)代入得a×3×(-1)=3,
解得a=-1.
故该抛物线解析式为:y=-(x+3)(x-1)或y=-x2-2x+3.
(2)∵y=-x2-2x+3=-(x+1)2+4.
∴抛物线的顶点坐标是(-1,4),对称轴是x=-1.
点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com