精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ABAC10,以AB为直径的OOBC相交于点D,与AC相交于点EDFAC,垂足为F,连接DE,过点AAGDE,垂足为GAG与⊙O交于点H

1)求证:DF是⊙O的切线;

2)若∠CAG25°,求弧AH的长;

3)若tanCDF,求AE的长;

【答案】(1)证明见解析(2)(3)6

【解析】

1)连接ODAD,根据圆周角定理得到∠ADB90°,求得ODAC,根据平行线的性质得到ODDF,根据切线的判定定理即可得到结论;

2)连接OH,根据三角形的内角和得到∠AEG65°,求得∠B=∠AEG65°,求得∠AOH30°,根据弧长公式即可得到结论;

3)根据余角的性质得到∠CAD=∠CDF,求出tanCADtanCDF,根据勾股定理得到CD2,根据相似三角形的性质得到CF2,于是得到结论.

1)证明:连接ODAD

AB是⊙O的半径,

∴∠ADB90°

ABAC

∵点DBC的中点,OAB的中点,

ODAC

DFAC

ODDF

OD是⊙O的半径,

DF是⊙O的切线;

2)解:连接OH

AGDG,∴∠G90°

∵∠CAG25°

∴∠AEG65°

∴∠B=∠AEG65°

∴∠BAC180°65°65°50°

∴∠OAH75°

∴∠AOH30°

lAH

3)解:∵∠CAD+C90°,∠CDF+C90°

∴∠CAD=∠CDF

tanCADtanCDF

AD2CD

DC2+2CD2102

CD2

∵△CDF∽△CAD

DC2CFAC

CF2

CDDE

OFAC

EFCF2

AE10226

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,

(1)求购买A型和B型公交车每辆各需多少万元?

(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数yx+b的图象经过点A01),与反比例函数yx0)的图象交于Bm2).

1)求kb的值;

2)在双曲线yx0)上是否存在点C,使得△ABC为等腰直角三角形?若存在,求出点C坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+3的图象分别交x轴、y轴于点B、点C,与反比例函数的图象在第四象限的相交于点P,并且PAy轴于点A,已知A 0,﹣6),且SCAP18

1)求上述一次函数与反比例函数的表达式;

2)设Q是一次函数ykx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2014山东淄博)如图,四边形ABCD中,AC⊥BDBD于点E,点FM分别是ABBC的中点,BN平分∠ABEAM于点NABACBD,连接MFNF

(1)判断△BMN的形状,并证明你的结论;

(2)判断△MFN△BDC之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x1的抛物线经过A(﹣10)、C03)两点,与x轴的另一个交点为B,点Dy轴上,且OB3OD

1)求该抛物线的表达式;

2)设该抛物线上的一个动点P的横坐标为t

①当0t3时,求四边形CDBP的面积St的函数关系式,并求出S的最大值;

②点Q在直线BC上,若以CD为边,点CDQP为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图O为坐标原点,点Bx轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=k0)在第一象限内的图象经过点A,与BC交于点F

1)若OA=10,求反比例函数解析式;

2)若点FBC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;

3)在(2)中的条件下,过点FEF∥OB,交OA于点E(如图),点P为直线EF上的一个动点,连接PAPO.是否存在这样的点P,使以POA为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(40),∠AOC60°,垂直于x轴的直线ly轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点MN(点M在点N的上方).

1)求AB两点的坐标;

2)设△OMN的面积为S,直线l运动时间为t秒(0t6),试求St的函数表达式;

3)在题(2)的条件下,是否存在某一时刻,使得△OMN的面积与OABC的面积之比为34?如果存在,请求出t的取值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线是常数)经过点.

(1)求该抛物线的解析式和顶点坐标;

(2)P(m,t)为抛物线上的一个动点,关于原点的对称点为.

当点落在该抛物线上时,求的值;

当点落在第二象限内,取得最小值时,求的值.

查看答案和解析>>

同步练习册答案