精英家教网 > 初中数学 > 题目详情

【题目】求1+2+22+23+…+22016的值,可设S=1+2+22+23+…+22016 , 于是2S=2+22+23+…+22017 , 因此2S﹣S=22017﹣1,所以S=22017﹣1.我们把这种求和方法叫错位相减法.仿照上述的思路方法,计算出1+5+52+53+…+52016的值为( )
A.52017﹣1
B.52016﹣1
C.
D.

【答案】C
【解析】解:设S=1+5+52+53+…+52016 , 则5S=5+52+53+…+52017
∴5S﹣S=52017﹣1,
∴S=
故选C.
【考点精析】本题主要考查了数与式的规律的相关知识点,需要掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一张纸片ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿BG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是(
A.∠FEG
B.∠EAF
C.∠AEF
D.∠EFA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a=2016×2018-2016×2017, b=2015×2016-2013×2017,,则abc的大小关系是( )

A. abc B. acb C. bac D. bca

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请观察下列算式,找出规律并填空。

···

根据以上规律解答以下三题:

(1) 10个等式是:__________=_____________

n个等式是:__________=_____________

(2)计算: 的值。

(3)若有理数满足 ,试求: 的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=.根据

以上信息,回答下列问题:

(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 .

(2)点A、B在数轴上分别表示实数x.

①用代数式表示A、B两点之间的距;

②如果,求x的值.

(3)直接写出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.

(1)若AB=6千米,老王开车从A到D共需多少时间?

(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系的位置如图所示.
(I)以O为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1 , 请画出菱形OA1B1C1 , 并直接写出点B1的坐标;
(II)将菱形OABC绕原点O顺时针旋转90°菱形OA2B2C2 , 请画出菱形OA2B2C2 , 并求出点B旋转到点B2的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的函数解析式;
(2)连接BC交x轴于点F.试在y轴负半轴上找一点P,使得△POC∽△BOF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边△ABC.
(1)如图①,P为等边△ABC外一点,且∠BPC=120°,试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;
(2)如图②,P为等边△ABC内一点,且∠APD=120°,求证:PA+PD+PC>BD;
(3)在(2)的条件下,若∠CPD=30°,AP=4,CP=5,DP=8,求BD的长

查看答案和解析>>

同步练习册答案