精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在四边形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E为BC中点,则AE+DE长为
 
分析:作辅助线,连接BD与AE交于点F,在Rt△ABD中,根据已知条件可将AF求出,由题意知:△BCD为直角三角形,在此三角形中,可将DE和EF的长求出,进而可将AE+DE长求出.
解答:精英家教网解:连接BD交AE于点F,
∵AB=AD=
2
,∠BAD=90°
∴BD=2,∠ADB=∠ABD=45°,AF=cot45°×AB=1
∵ADC=135°,∠ABC=75°
∴∠BDC=90°,∠CBD=30°
∵E为BC中点∴DE=
1
2
BC
在Rt△BCD中,BC=
BD
cos∠CBD
=
2
3
2
=
4
3
3
,CD=DE=
2
3
3

∵AE⊥BD,CD⊥BD∴EF∥CD
EF
CD
=
BE
BC
∴EF=
1
2
CD=
3
3

∴AE+DE=AF+EF+DE=1+
3
3
+
2
3
3
=1+
3
点评:本题主要考查直角三角形的性质及求解方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在四边形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案