精英家教网 > 初中数学 > 题目详情

【题目】如图,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点在直线上的射影分别为点,那么线段叫做线段在直线上的射影.

如图,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点在直线上的射影分别为点,那么线段叫做线段在直线上的射影.

如图②,为线段外两点,,垂足分别为

点在上的射影是________点,点在上的射影是________点,

线段上的射影是________,线段上的射影是________

根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)

【答案】B A 线段BC 线段AB

【解析】

(1)由题中所给的射影的概念可直接进行解答;

(2)先根据相似三角形的判定定理得出△ACD∽△CBD,再根据相似三角形的对应边成比例可得出结论.

(1)B,A,线段BC,线段AB;

(2)如图,在RtABC中,∠ACB=90°,CDAB,垂足为D,(图形正确)


AC、BCAB上的射影分别是AD、BD,

CDAB,

∴∠ADC=BDC,

∵∠B+A=90°,B+DCB=90°,

∴∠A=DCB,

∴△ACD∽△CBD,

CDAC,BC在斜边上射影的比例中项.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,如图所示,点.

1)求直线的解析式;

2)求的面积;

3)一次函数为常数).

①求证:一次函数的图象一定经过点

②若一次函数的图象与线段有交点,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮和妈妈从家出发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线出发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最终与妈妈会合,小亮和妈妈的速度始终不变,如图是小亮和妈妈两人之间的距离y(米)与妈妈出发的时间x(分钟)的图象;则小亮开始返回时,妈妈离家的距离为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.

1)如果要使每天销售饮料获利14000元,问每箱应降价多少元?

2)每箱降价多少元超市每天获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是(  )

A. 10海里 B. 10 海里 C. 10海里 D. 20海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=,BC=6cmAC=10cm

1)求AB的长;

2)若P点从点B出发,以2cm/s的速度在BC所在的直线上运动,设运动时间为t秒,那么当t为何值时,△ACP为等腰三角形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);

(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,

1)当0x5时,单价y   元.当单价y8.8时,x的取值范围为   

2)根据函数图象,求第段函数图象中单价y(元)与购买量(千克)的函数关系式,并写出x的取值范围.

3)促销活动期间,张老师计划去该店购买A种水果10千克,那么张老师共需花费多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小孟同学将等腰直角三角板ABCACBC)的直角顶点C放在一直线m上,将三角板绕C点旋转,分别过AB两点向这条直线作垂线ADBE,垂足为DE

(1)如图1,当点AB都在直线m上方时,猜想ADBEDE的数量关系是   

(2)将三角板ABCC点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B在直线m下方.(1)中的结论成立吗?请你写出ADBEDE的数量关系,并证明你的结论.

(3)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出ADBEDE的数量关系结论   

查看答案和解析>>

同步练习册答案