精英家教网 > 初中数学 > 题目详情
18.回答下列问题
(1)填空:x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=(x-$\frac{1}{x}$)2+2
(2)若a+$\frac{1}{a}$=5,则a2+$\frac{1}{{a}^{2}}$=23;
(3)若a2-3a+1=0,求a2+$\frac{1}{{a}^{2}}$的值.

分析 (1)根据完全平方公式进行解答即可;
(2)根据完全平方公式进行解答;
(3)先根据a2-3a+1=0求出a+$\frac{1}{a}$=3,然后根据完全平方公式求解即可.

解答 解:(1)2、2.
(2)23.
(3)∵a2-3a+1=0
两边同除a得:a-3+$\frac{1}{a}$=0,
移向得:a+$\frac{1}{a}$=3,
∴a2+$\frac{1}{{a}^{2}}$=(a+$\frac{1}{a}$)2-2=7.

点评 本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.(1)计算:$\sqrt{18}$-($\sqrt{2}$+1)-1+($\sqrt{3}$-$\sqrt{2}$)0
(2)用适当的方法解下列方程:
①x2-12x-4=0;
②(x-1)2+2x(x-1)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.用直尺作图(不写画法),已知如图,AB是线段,C,D是两点.
(1)过A、C两点作直线AC,过B、D两点作直线BD,直线AC与BD交于点E.
(2)连接BC和AD,BC和AD交于点F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知△ABC中,AB=AC,∠BAC=90°,AP∥BC,且CP=BC交AB于点E,求证:BP=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)计算3$\sqrt{3}$-$\sqrt{8}$+$\sqrt{2}$-$\sqrt{27}$;
(2)直角三角形的斜边c=7,直角边a=4$\sqrt{3}$,求另一直角边b的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知Rt△ABC,∠C=90°,S△ABC=5,AB=$\sqrt{29}$,求tanA+tanB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图是某学校主楼梯从底楼到二楼的楼梯截面图,已知BC=7米,AB=6+3$\sqrt{3}$米,中间平台DE与地面AB平行,且DE的长度为2米,DM、EN为平台的两根支柱,DM、EN垂直于AB,垂足分别为M、N,∠EAB=30°,∠CDF=45°,楼梯宽度为3米.
(1)若要在楼梯上(包括平台DE)铺满地毯,求地毯的长度;
(2)沿楼梯从A点到E点铺设价格为每平方米100元的地毯,从E点到C点铺设价格为每平方米120元的地毯,求用地毯铺满整个楼梯共需要花费多少元钱?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知a+$\frac{1}{a}$=$\frac{4}{3}$$\sqrt{3}$,则a5+$\frac{1}{{a}^{3}}$=$\frac{82\sqrt{3}}{9}$或$\frac{82\sqrt{3}}{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某人带自产的土豆进城出售,他先按市场价售出一些后,发现天色较晚,决定降价出售.为了方便顾客,他的钱包中有一些备用零钱用于找零.学习小组观察发现售出土豆数量x与他钱包中的总钱数y的关系如图所示.结合图象回答下列问题:
(1)他带的备用零钱是多少?
(2)每斤土豆的市场价格是多少?
(3)降价后他按每斤0.4元将剩余土豆售完后,问他钱包中共有多少钱,他共带有多少土豆来卖?

查看答案和解析>>

同步练习册答案