精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,对角线BD、AC相交于点G,∠ABD=12°,∠DBC=36°,∠ACB=48°,∠ACD=24°.
(1)求证:BG=AC.
(2)求∠ADB的度数.

(1)证明∵∠ABD=12°,∠DBC=36°,∠ACB=48°,
∴∠ABC=∠ABD+∠DBC=48°=∠ACB,
∴AB=AC,
又∠AGB=∠ACB+∠DBC=48°+36°=84°,
∠BAC=180°-∠ABC-∠ACB=84°,
∴∠BAG=∠BGA=84°,
∴BG=BA,
∴BG=AC.

(2)解:在四边形ABCD形外作∠PBA=∠DBA=12°,并使BP=BD,连AP、PC.
则在△PAB和△DBA中

∴△PBA≌△DBA(SAS),
∠BPA=∠BDA,
又∵∠BCD=∠ACB+∠ACD=48°+24°=72°,
∠BDC=180°-∠DBC-∠BCD=72°,
∴∠BCD=∠BDC,
∴BC=BD=BP,
又∠PBC=∠PBA+∠ABD+∠DBC=12°+12°+36°=60°,
∴△PBC为等边三角形.
∴PB=PC,
∵在△PBA和△PCA中

∴△PBA≌△PCA(SSS),
∴∠BPA=∠CPA=30°.
∴∠ADB=∠BPA=30°.
分析:(1)求出∠ABC,推出AB=AC,求出∠AGB和∠BAC的度数,推出BG=AB,即可得出答案;
(2)在四边形ABCD形外作∠PBA=∠DBA=12°,并使BP=BD,连AP、PC,根据SAS推出△PBA≌△DBA,推出∠BPA=∠BDA,求出∠BCD、∠BDC的度数,推出BC=BD=BP,求出∠PBC的度数,推出△PBC为等边三角形.推出PB=PC.根据SSS证△PBA≌△PCA,推出∠BPA=∠CPA=30°,即可得出答案.
点评:本题考查了全等三角形的性质和判定,三角形的内角和定理,等腰三角形的性质和判定,等边三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力,本题综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案