精英家教网 > 初中数学 > 题目详情
某商品现在的售价为每件60元,每星期可卖出300件,每涨价1元,每星期少卖10件.已知商品的进价为每件40元,如何定价才能获得最大利润,最大利润是多少?
分析:每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数,即可列出函数解析式,根据函数的性质即可求得如何定价才能使利润最大.
解答:解:设每件涨价x元,
y=(60-40+x)(300-10x),
=-10x2+100x+6000,
=-10(x-5)2+6250,
故当x=5时,y有最大值6250元.
即定价为:60+5=65元
答:每件定价为65元时利润最大,最大值是6250元.
点评:此题主要考查了二次函数的应用,根据最值问题一般的解决方法是转化为函数问题是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行 解答即可.
某商品现在的售价为每件35元,毎天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当毎件商品降价多少元时,可使毎天的销售额最大,最大销售额是多少?
设每件商品降价x元,毎天的销售额为y元.
(I)分析:根据问题中的数量关系,用含x的式子填表:
原价 每件降价1元 毎件降价2元 毎件降价x元
每件售价(元) 35 34 33
毎天销量(件) 50 52 54
(II)由以上分析,用含x的式子表示y,并求出问题的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件.已知商品的进价为每件40元,如何定价才能使利润最大?设每件涨价x元,每星期售出商品的利润y元.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?
设每件商品降价x元.每天的销售额为y元.
(I) 分析:根据问题中的数量关系.用含x的式子填表:
  原价 每件降价1元 每件降价2元 每件降价x元
每件售价(元) 35     34     33  
每天售量(件) 50     52     54  
(Ⅱ) (由以上分析,用含x的式子表示y,并求出问题的解)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件.已知商品的进价为每件40元,如何定价才能使利润最大?设每件涨价x元,每星期售出商品的利润y元,求y与x的函数关系式及自变量x的取值范围.
(2)在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,求油的最大深度.

查看答案和解析>>

同步练习册答案