精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G,且∠AGO=30°。

(1)点C、D的坐标
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

(1)C(4,),D(1,);
(2)
(3)见解析。
(1)根据题意可得点C的纵坐标为3,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;
(2)由题意可得点C和点D关于抛物线的对称轴对称,从而得出抛物线的对称轴为,再由抛物线的顶点在直线,可得出顶点坐标为(),设出顶点式,代入点C的坐标即可得出答案.
(3)分EF=EG、GF=EG、GF=EF三种情况分析。
解:(1)C(4,),D(1,);
(2)顶点(),解析式
(3)EF=EG   
GF=EG  
GF=EF    
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,已知抛物线与x轴交于点A(1,0)和点B,顶点为P.
(1)若点P的坐标为(-1,4),求此时抛物线的解析式;
(2)如图若点P的坐标为(-1,k),k<0,点Q是y轴上一个动点,
当k为何值时,QB+QP取得最小值为5;
(3)试求满足(2)时动点Q的坐标. (本题12分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为(  )
A.28米B.48米C.68米D.88米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.

(1)用m的代数式表示点A、D的坐标;
(2)求这个二次函数关系式;
(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,―4).

(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QE//BC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标.
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数)与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1<y2成立的的取值范围是  .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一种产品的质量分成6种不同档次,若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品。
⑴若最低档次的产品每件利润17元时,生产哪一种档次的产品的利润最大?并求最大利润。
⑵由于市场价格浮动,生产最低档次的产品每件利润可以从8元到24元不等,那么生产哪种档次的产品所得利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线与x轴相交时两交点间的线段长为4,则m的值是    

查看答案和解析>>

同步练习册答案