在平面直角坐标系中,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;
(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;
(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.
(1)(2)存在点,使△ACP的面积最大(3)存在。点(4)存在。点。(5)点
【解析】解:(1)由抛物线过A(-3,0),B(1,0),则
,解得 。
∴二次函数的关系解析式为。
(2)设点P坐标为(m,n),则。
连接PO,作PM⊥x轴于M,PN⊥y轴于N。
PM =, ,AO=3。
当时,,所以OC=2。
111
∵<0,∴函数有最大值,当时,有最大值。
此时。
∴存在点,使△ACP的面积最大。
(3)存在。点。
(4)存在。点。
(5)点。
(1)将点A、B的坐标代入即可求得a、b,从而得到二次函数的关系解析式。
(2)设点P坐标为(m,n),则。连接PO,作PM⊥x轴于M,PN⊥y轴于N,根据求出S关于m的二次函数,根据二次函数最值求法即可求解。
(3)分BQ为斜边和CQ为斜边两种情况讨论即可。
(4)分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论即可。
(5)分AC是边和对角线两种情况讨论即可。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| ||
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com