精英家教网 > 初中数学 > 题目详情

已知ABCD中的对角线相交于点O,分别添加下列条件:A.∠ABC=90°,B.AC⊥BD,C.AB=BC,D.AC平分∠BAD,E.AO=OD,使得ABCD是菱形的条件的序号是_____________.

答案:BCD
解析:

BCD


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.
(I)如图(1),连接AO、OC,则有∠B=
1
2
∠1
∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

在下面推理过程的括号内填上推理的依据
已知,如图所示,在?ABCD中,BF=DE.
求证:∠EAF=∠ECF
证明:∵四边形ABCD是平行四边形(
已知
已知

∴DC=AB(
平行四边形的对边相等
平行四边形的对边相等

DC∥AB(
平行四边形的对边相互平行
平行四边形的对边相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代换
等量代换

即AF=CE(
等量代换
等量代换

∴AF 
.
CE
∴四边形AFCE是平行四边形(
对边平行且相等的四边形是平行四边形
对边平行且相等的四边形是平行四边形

∴∠EAF=∠ECF(
平行四边形的对角相等
平行四边形的对角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是平行四边形,则下列结论中哪一个不满足平行四边形的性质(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,点E是射线DA一动点(DE>1),连结BE,以BE为边在BE上方作正方形BEFG,设M为正方形BEFG的中心,如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图中的一个损矩形并简单说明理由.
(2)连接AM,无论点E位置怎样变化,求证:DB∥AM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.
(I)如图(1),连接AO、OC,则有数学公式数学公式.∵∠1+∠2=360°∴数学公式,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

查看答案和解析>>

同步练习册答案