精英家教网 > 初中数学 > 题目详情
已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.

【答案】分析:(1)作PE⊥OM,PF⊥ON,垂足为M、N,由四边形内角和定理可知∠EPF+∠MON=180°,已知∠APB+∠MON=180°,则∠EPF=∠APB,可证∠EPA=∠FPB,由角平分线的性质,得PE=PF,可证△EPA≌△FPB,得出结论;
(2)由(1)可知△PAB为等腰三角形,则∠PBC=(180°-∠APB)=∠MON=∠BOP,可证△PBC∽△POB,由S△POB=3S△PCB可知,PO=3PC,再利用相似比求解;
(3)作BH⊥OT,垂足为T,当∠MON=60°时,∠APB=120°,由PA=PB得∠PBA=∠PAB=30°,又∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,可求∠ABO度数为75°,从而∠OBP=105°,在△OBP中,∠BOP=30°,则∠BPO=45°,分别解Rt△OBH,Rt△PBH即可求OP.
解答:解:(1)作PE⊥OM,PF⊥ON,垂足为E、F
∵四边形OEPF中,∠OEP=∠OFP=90°,
∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,
∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,
∴∠EPA=∠FPB,
由角平分线的性质,得PE=PF,
∴△EPA≌△FPB,即PA=PB;

(2)∵S△POB=3S△PCB
∴PO=3PC,
由(1)可知△PAB为等腰三角形,则∠PBC=(180°-∠APB)=∠MON=∠BOP,
又∵∠BPC=∠OPB(公共角),
∴△PBC∽△POB,
=
即PB2=PO•PC=3PC2
=

(3)作BH⊥OT,垂足为H,
当∠MON=60°时,∠APB=120°,
由PA=PB,得∠PBA=∠PAB=(180°-∠APB)=30°,
又∵∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,
∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°,
在△OBP中,∵∠BOP=30°,∴∠BPO=45°,
在Rt△OBH中,BH=OB=1,OH=
在Rt△PBH中,PH=BH=1,
∴OP=OH+PH=+1.
点评:本题考查了旋转的性质的运用.关键是通过运用旋转的作图,得出全等三角形,特殊三角形解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知, 点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.

(1)利用图1,求证:PA=PB;

(2)如图2,若点的交点,当时,求PB与PC的比值;

(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.

(1)(2)

(3)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点的交点,当时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.
(1)(2)
(3)

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市考数学一模试卷 题型:解答题

已知, 点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.

(1)利用图1,求证:PA=PB;

(2)如图2,若点的交点,当时,求PB与PC的比值;

(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.

(1)(2)

(3)

 

查看答案和解析>>

同步练习册答案