8£®¹Ëç÷ÔÚѧϰÁË¡¶Õ¹¿ªÓëÕÛµþ¡·ÕâÒ»¿Îºó£¬Ã÷°×Á˺ܶ༸ºÎÌ嶼ÄÜÕ¹¿ª³ÉƽÃæͼÐΣ®ÓÚÊÇËýÔÚ¼ÒÓüôµ¶Õ¹¿ªÁËÒ»¸ö³¤·½ÌåÖ½ºÐ£¬¿ÉÊÇÒ»²»Ð¡ÐĶà¼ôÁËÒ»ÌõÀ⣬°ÑÖ½ºÐ¼ô³ÉÁËÁ½²¿·Ö£¬¼´Í¼ÖеĢٺ͢ڣ®¸ù¾ÝÄãËùѧµÄ֪ʶ£¬»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©¹Ëç÷×ܹ²¼ô¿ªÁË8ÌõÀ⣮
£¨2£©ÏÖÔÚ¹Ëç÷Ï뽫¼ô¶ÏµÄ¢ÚÖØÐÂÕ³Ìùµ½¢ÙÉÏÈ¥£¬¶øÇÒ¾­¹ýÕÛµþÒÔºó£¬ÈÔÈ»¿ÉÒÔ»¹Ô­³ÉÒ»¸ö³¤·½ÌåÖ½ºÐ£¬ÄãÈÏΪËýÓ¦¸Ã½«¼ô¶ÏµÄÖ½ÌõÕ³Ìùµ½¢ÙÖеÄʲôλÖã¿ÇëÄã°ïÖúËýÔÚ¢ÙÉϲ¹È«£®
£¨3£©ÒÑÖª¹Ëç÷¼ôϵij¤·½ÌåµÄ³¤¡¢¿í¡¢¸ß·Ö±ðÊÇ6cm¡¢6cm¡¢2cm£¬ÇóÕâ¸ö³¤·½ÌåÖ½ºÐµÄÌå»ý£®

·ÖÎö £¨1£©¸ù¾ÝƽÃæͼÐεóö¼ô¿ªÀâµÄÌõÊý£¬
£¨2£©¸ù¾Ý³¤·½ÌåµÄÕ¹¿ªÍ¼µÄÇé¿ö¿ÉÖªÓÐÁ½ÖÖÇé¿ö£¬
£¨3£©¸ù¾Ý³¤·½ÌåµÄÌå»ý¹«Ê½£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£¨1£©Ð¡Ã÷¹²¼ôÁË8ÌõÀ⣬
¹Ê´ð°¸Îª£º8£®
£¨2£©Èçͼ£¬ËÄÖÖÇé¿ö£®


£¨3£©6¡Á6¡Á2=72cm3£¬
Õâ¸ö³¤·½ÌåÖ½ºÐµÄÌå»ýÊÇ72cm3£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˼¸ºÎÕ¹¿ªÍ¼£¬½áºÏ¾ßÌåµÄÎÊÌ⣬±æÎö¼¸ºÎÌåµÄÕ¹¿ªÍ¼£¬Í¨¹ý½áºÏÁ¢ÌåͼÐÎÓëƽÃæͼÐεÄת»¯£¬½¨Á¢¿Õ¼ä¹ÛÄÊǽâ¾ö´ËÀàÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¼ÆË㣨a3b2£©3¡Â£¨-a3£©2µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®a6b2B£®a2b5C£®a5b3D£®a3b6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬µãMÊÇADµÄÖе㣬ÇÒMB=MC£®ÈôAD=4£¬AB=6£¬BC=8£¬ÔòÌÝÐÎABCDµÄÖܳ¤Îª24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚRt¡÷ABCºÍRt¡÷ABDÖУ¬¡ÏC=¡ÏBAD=90¡ã£¬BD¡¢AC½»ÓÚµãF£¬ÇÒAF=AD£¬×÷DE¡ÍACÓÚµãE£®
£¨1£©ÇóÖ¤£º¡ÏCBF=¡ÏABF£»
£¨2£©ÈôAB-BC=4£¬AC=8£¬ÇóBCµÄ³¤£»
£¨3£©ÇóÖ¤£ºAE=CF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãPÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$ͼÏóÉÏÒ»¸ö¶¯µã£¬ÒÔPΪԲÐĵÄԲʼÖÕÓëyÖáÏàÇУ¬ÉèÇеãΪA£®
£¨1£©µ±¡ÑPÔ˶¯µ½ÓëxÖáÒ²ÏàÇÐÓÚKµãʱ£¬Èçͼ1£¬ÅжÏËıßÐÎOAPKµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©µ±¡ÑPÔ˶¯µ½ÓëxÖáÏཻÓÚB¡¢CÁ½µãʱ£¬ÒÑÖªB¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪB£¨1£¬0£©¡¢C£¨3£¬0£©£¬ÇÒËıßÐÎABCPΪÁâÐΣ¬Èçͼ2£¬Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¾ØÐÎABCDÖУ¬BC=6£¬µãEÊÇAD±ßÉÏÒ»µã£¬Á¬½ÓBE£¬¡ÏABE=30¡ã£¬BE=DE£¬Á¬½ÓBD£®µãPÔÚÏ߶ÎEDÔ˶¯£¬¹ýµãP×÷PQ¡ÎBD½»BEÓÚµãQ£®
£¨1£©Èçͼ1£¬ÉèPD=x£¬ÒÔP¡¢Q¡¢DÈýµãΪ¶¥µãËù¹¹³ÉµÄÈý½ÇÐÎÃæ»ýΪy£¬ÇóyÓëxµÄº¯Êý¹Øϵʽ£¨²»ÒªÇóд³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£©£»
£¨2£©Èçͼ2£¬µ±µãPÔ˶¯µ½Ï߶ÎEDµÄÖеãʱ£¬Á¬½ÓQC£¬¹ýµãP×÷PF¡ÍQC£¬´¹×ãΪF£¬PF½»¶Ô½ÇÏßBDÓÚµãG£¬ÇóÏ߶ÎPGµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÖ±Ïßl1£ºy=-$\frac{1}{2}$x-1·Ö±ðÓëx¡¢yÖá½»ÓÚµãA¡¢B£®½«Ö±Ïßl1ƽÒƺó¹ýµãC£¨4£¬0£©µÃµ½Ö±Ïßl2£¬l2½»Ö±ÏßADÓÚµãE£¬½»yÖáÓÚµãF£¬ÇÒEA=EC£®
£¨1£©ÇóÖ±Ïßl2µÄ½âÎöʽ£»
£¨2£©ÈôµãPΪxÖáÉÏÈÎÒ»µã£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷DEPµÄÖܳ¤×îС£¬Èô´æÔÚ£¬ÇóÖܳ¤µÄ×îСֵ¼°µãPµÄ×ø±ê£»
£¨3£©ÒÑÖªMΪµÚ¶þÏóÏÞÄÚÖ±Ïßl2ÉÏÈÎÒ»µã£¬¹ýµãM×÷MNƽÐÐÓÚyÖᣬ½»Ö±Ïßl1ÓÚµãN£¬µãHΪֱÏßAEÉÏÈÎÒ»µã£®ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃ¡÷MNHÊÇÒÔHµãΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¶¨Ò壺Èç¹û¶þ´Îº¯Êýy1=a1x2+b1x+c1£¨a1¡Ù0£¬a1¡¢b1¡¢c1Êdz£Êý£©Óëy2=a2x2+b2x+c2£¨a2¡Ù0£¬a2¡¢b2¡¢c2Êdz£Êý£©Âú×ãa1+a2=0£¬b1=b2£¬c1+c2=0£¬Ôò³ÆÕâÁ½¸öº¯Êý»¥Îª¡°Ðýתº¯Êý¡±£®Çóy=-x2+3x-2º¯ÊýµÄ¡°Ðýתº¯Êý¡±£®Ð¡Ã÷ÊÇÕâÑù˼¿¼µÄ£ºÓÉy=-x2+3x-2º¯Êý¿ÉÖªa1=-1£¬b1=3£¬c1=-2£¬¸ù¾Ýa1+a2=0£¬b1=b2£¬c1+c2=0Çó³öa2£¬b2£¬c2£¬¾ÍÄÜÈ·¶¨Õâ¸öº¯ÊýµÄ¡°Ðýתº¯Êý¡±£®
Çë²Î¿¼Ð¡Ã÷µÄ·½·¨½â¾öÏÂÃæµÄÎÊÌ⣺
£¨1£©Ð´³öº¯Êýy=-x2+3x-2µÄ¡°Ðýתº¯Êý¡±£»
£¨2£©Èôº¯Êýy1=x2-$\frac{4n}{3}$x+nÓëy2=-x2+mx-3»¥Îª¡°Ðýתº¯Êý¡±£¬Çó£¨m+n£©2016µÄÖµ£»
£¨3£©ÒÑÖªº¯Êýy=2£¨x+1£©£¨x-4£©µÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬µãA¡¢B¡¢C¹ØÓÚÔ­µãµÄ¶Ô³Æµã·Ö±ðÊÇA1¡¢B1¡¢C1£¬ÇëÖ¸³ö¾­¹ýµãA1¡¢B1¡¢C1µÄ¶þ´Îº¯ÊýÓëy=2£¨x+1£©£¨x-4£©ÊÇ·ñ»¥Îª¡°Ðýתº¯Êý¡±£®ÌîÊÇ £¨ÊÇ»ò²»ÊÇ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÉäÏßOA½»·´±ÈÀýº¯Êýy=$\frac{1}{x}$£¨x£¾0£©Í¼ÏóÓÚµãP£¬µãRΪ·´±ÈÀýº¯Êýy=$\frac{1}{x}$£¨x£¾0£©Í¼ÏóÉϵÄÁíÒ»µã£¬ÇÒPR=2OP£¬·Ö±ð¹ýµãP¡¢R×÷xÖá¡¢yÖáµÄƽÐÐÏߣ¬Á½ÏßÏཻÓÚµãM£¨a£¬b£©£¬Ö±ÏßMR½»xÖáÓÚµãB£¬¹ýµãP×÷yÖáµÄƽÐÐÏß·Ö±ð½»Ö±ÏßOMºÍxÖáÓÚµãQ¡¢H£¬Á¬½ÓRQ£®
£¨1£©Çó³öµãP¡¢RµÄ×ø±êºÍÖ±ÏßOM µÄ½âÎöʽ£¨Óú¬a¡¢b µÄʽ×Ó±íʾ£©£»
£¨2£©ÊÔ̽¾¿¡ÏMOBºÍ¡ÏAOBÖ®¼äµÄÊýÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èç¹û½«·´±ÈÀýº¯Êýy=$\frac{1}{x}$£¨x£¾0£©¸ÄΪy=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©Ê±£¬ÉÏÊö£¨2£©ÖеĽáÂÛÊÇ·ñ³ÉÁ¢ÊÇ£¨Ìî¡°ÊÇ¡±»ò¡°·ñ¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸