精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在平行四边形ABCD中,E是AD的中点,连接BE、CE,∠BEC=90°.
(1)求证:BE平分∠ABC;
(2)若EC=4,且
BE
AB
=
3
,求四边形ABCE的面积.
分析:(1)取BC的中点F,连接EF,要证明BE平分∠ABC,只需证明四边形ABFE为菱形,因为AE和BF既平行又相等,可先证平行四边形,又因为直角三角形斜边上的中线等于斜边的一半,可证EF=FB,即四边形ABFE为菱形,利用菱形的性质可知对角线平分对角,从而得出结论;
(2)由图象可知四边形ABCE为梯形,所以要求面积,必须求出上下底和高,而上下底和高都可利用题中已知条件,借助于三角函数来求出.
解答:(1)证明:取BC的中点F,连接EF.
∵E、F分别是AD、BC的中点,四边形ABCD为平行四边形,
∴AE∥BF,即四边形ABFE为平行四边形.(1分)
又∵∠BEC=90°,F为BC的中点,
∴EF=
1
2
BC=BF.(2分)
∴四边形ABFE为菱形.(3分)
∴BE平分∠ABC.(4分)

(2)解:过点E作EH⊥BC,垂足为H.
∵四边形ABFE为菱形,
∴AB=BF=
1
2
BC
.(5分)
∴BE=
3
AB,
BE
BC
=
3
2

又∵∠BEC=90°,
∴∠BCE=60度.(6分)
∵BC=2EC=8,EH=EC•sin60°=4×
3
2
=2
3
.(8分)
∴S四边形ABCE=
1
2
(AE+BC)•EH=
1
2
(8+4)×2
3
=12
3
.(9分)
点评:此题考查了菱形的判定以及三角函数的应用,考查比较全面,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABC0中,已知点A、C两点的坐标为A(
5
5
),C(2
5
,0).
(1)求点B的坐标.
(2)将平行四边形ABCO向左平移
5
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形ABCO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.
(2)如图2,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平模拟)如图,已知四边形ABCD.请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予证明.
关系:①AD∥BC;②AB=CD;③∠B+∠C=180°;④∠A=∠C.
已知:在四边形ABCD中,
.(填序号,写出一种情况即可)  
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形OABC中,已知点A、C两点的坐标为A (
3
3
),C(2
3
,0).
(1)填空:点B的坐标是
(3
3
3
(3
3
3

(2)将平行四边形OABC向左平移
3
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系xOy中,直线AB与x轴、y轴的交点分别为A、B,OB=3,,将∠OBA对折,使点O的对应点H恰好落在直线AB上,折痕交x轴于点C,

(1)求过A、B、C三点的抛物线解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四

边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)若点Q是抛物线上一个动点,使得以A、B、Q为顶点并且以AB为直角边的直角三角形,直角写出Q点坐标。

查看答案和解析>>

同步练习册答案