精英家教网 > 初中数学 > 题目详情
在△ABC中,∠C=90°,AB=18,tanA=
5
2
,那么不求出∠A的度数,能求出AC,BC的长和sinA的值吗?请说明理由.
考点:解直角三角形
专题:
分析:根据tanA=
5
2
=
BC
AC
设BC=
5
x,AC=2x,根据勾股定理求出x,即可求出答案.
解答:解:能,
理由是:∵tanA=
5
2
=
BC
AC

∴设BC=
5
x,AC=2x,
∵AB=18,
∴由勾股定理得:(
5
x)2+(2x)2=182
解得:x=6,
即AC=12,BC=6
5

sinA=
BC
AB
=
6
5
18
=
5
3
点评:本题考查了勾股定理,解直角三角形的应用,解此题的关键是得出关于x的方程,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

化简分式
x-3
|x|-3
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y1=k1x和反比例函数y2=
k2
x
的图象都经过点(1,2),则k1、k2的值分别为(  )
A、k1=2,k2=
1
2
B、k1=
1
2
,k2=2
C、k1=2,k2=2
D、k1=
1
2
,k2=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AO⊥BO,CO⊥DO,∠AOD=160°,则∠BOC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正六边形ABCDEF的周长为12,⊙O是正六边形ABCDEF的内切圆.
(1)求⊙O的半径;
(2)求正六边形ABCDEF的面积;
(3)求图中阴影部分的面积;
(4)若扇形OMN是一个圆锥的侧面展开图,求圆锥的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列式子是因式分解的是(  )
A、a(a-b-1)=a2+ab-a
B、a2-a-3=a(a-1)-3
C、-4a2+9b2=-(2a+3b)(2a-3b)
D、2x+1=x(2+
1
x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度. 
①将△ABC以点O为旋转中心,顺时针旋转90°得△A1B1C1,画出旋转后的图形.
②写出△ABC和△A1B1C1的各个顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知实数a、b、c满足a=6-b,c2=ab-9,你能肯定a=b吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个圆锥的体积是100cm3,求底面积S(cm2)与高h(cm)之间的函数关系式及自变量的取值范围.

查看答案和解析>>

同步练习册答案