精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C="90" o,AC=BC,BE平分∠ABC, ED⊥AB交AB于D,若AB=2㎝,则△ADE的周长是        。
 

试题分析:从已知条件进行思考,根据角平分线性质得CE=DE,求证△BCE≌△BDE,得出BC=BD,再利用求出BC,进一步求出AD,然后求AD+DE+AE.即为△ADE的周长.
∵BE平分∠ABC,ED⊥AB于点D,∠C=90°,
∴CE=DE,
∵BE为公共边,
∴△BCE≌△BDE,
∴BC=BD,
∵∠C=90°,AB=cm,
∴BC=AC=2,
∴AD=AB-BD=
∴AD+DE+AE=AD+CE+AE=AD+AC=
点评:利用角平分线性质将相等的线段进行转化,是求三角形周长的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在等边△ABC的AC边上取中点D,在BC的延长线上取一点E,使 CE=CD.

求证:BD=DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,BE平分∠ABC,DE⊥AB,垂足为D,那么AE+ED=                

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4,则 BC =     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(    )
A.1︰1︰1      B.1︰2︰3       C.2︰3︰4         D.3︰4︰5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,∠C=,∠B=,BC=4,则AB=_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各组线段中⑴;⑵; ⑶;⑷;⑸;其中可以构成直角三角形的有(     )组。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知DE∥BC,CD是∠ACBD平分线,∠B=70°,∠A=60°,则∠EDC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,OP平分∠AOB,PC⊥OB于C,点D为射线OA上一动点,若PC=9,连PD,则PD的范围是        

查看答案和解析>>

同步练习册答案