精英家教网 > 初中数学 > 题目详情
精英家教网如图,点P是矩形ABCD的边AD上一动点,矩形的两条边长AB、BC分别为8和15,则点P到矩形的两条对角线AC和BD的距离之和为(  )
A、17
B、7
C、
120
17
D、
17
2
分析:由矩形ABCD可得:S△AOD=
1
4
S矩形ABCD,又由AB=8,BC=15,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=
1
2
OA•PE+
1
2
OD•PF,代入数值即可求得结果.
解答:精英家教网解:连接OP,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=
1
2
AC,OB=OD=
1
2
BD,∠ABC=90°,
S△AOD=
1
4
S矩形ABCD
∴OA=OD=
1
2
AC,
∵AB=8,BC=15,
∴AC=
AB2+BC2
=
289
=17,S△AOD=
1
4
S矩形ABCD=30,
∴OA=OD=
17
2

∴S△AOD=S△APO+S△DPO=
1
2
OA•PE+
1
2
OD•PF=
1
2
OA•(PE+PF)=
1
2
×
17
2
(PE+PF)=30,
∴PE+PF=
120
17

∴点P到矩形的两条对角线AC和BD的距离之和是
120
17

故选C.
点评:此题考查了矩形的性质.解此题的关键是将△AOD的面积用矩形求得,再用△APO与△POD的面积和表示出来.还要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.
(1)如图1,当点P为线段EC中点时,易证:PR+PQ=
125
(不需证明).
(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点E是矩形ABCD中BC边的中点,AB=6,当AE⊥DE时,矩形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合.若BC=3,则折痕CE的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝应县一模)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是矩形ABCD对角线BD上的一个动点,AB=6,AD=8,则PA+PC的最小值为
10
10

查看答案和解析>>

同步练习册答案