精英家教网 > 初中数学 > 题目详情
如图,O为正方形ABCD的对角线AC与BD的交点,M、N两点分别在BC与AB上,且OM⊥ON.
(1)试说明OM=ON;
(2)试判断CN与DM的关系,并加以证明.
(1)∵四边形ABCD是正方形,
∵OC=OB,∠OCM=∠OBN=45°,BD⊥AC,
∵OM⊥ON,
∴∠MON=∠COB=90°,
∴∠MON-∠MOB=∠COD-∠MOB,
∴∠COM=∠BON,
∵在△ONB和△OMC中,
∠NOB=∠MOC
OB=OC
∠OBN=∠OCM

∴△ONB≌△OMC(ASA),
∴OM=ON.

(2)CN=DM,CN⊥DM,
证明:∵四边形ABCD是正方形,
∴OC=OD,BD⊥AC,
∴∠DOC=∠BOC=90°,
∵∠COM=∠BON,
∴∠DOC+∠COM=∠BOC+∠BON,
即∠DOM=∠CON,
∵在△DOM和△CON中
OD=OC
∠DOM=∠CON
OM=ON

∴△DOM≌△CON(SAS),
∴CN=DM,∠DMO=∠CNO,
∵∠MON=90°,
∴∠NEO+∠CNO=90°,
∵∠MEC=∠NEO,
∴∠DMO+∠MEC=90°,
∴∠MFE=180°-90°=90°,
∴CN⊥DM.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(  )
A.AB上B.BC上C.CD上D.DA上

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.

(1)求证:AB-OF=
1
2
AC

(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与
1
2
A1C1
三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=6,C1E1=4时,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为12,E,F分别是AD,CD上的点,且EF=10,∠EBF=45°,则AE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个边长为1的正方形,以它的对角线为边向外做第二个正方形,再以第二个正方形的对角线为边向外作第三个正方形,以此类推,则第四个正方形的边长为______,第n个正方形的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,E为AB上一点,F为CB延长线上一点,且∠EFB=45°.
(1)求证:AF=CE;
(2)你认为AF与CE有怎样的位置关系?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当点坐标为A(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

?ABCD中,O是对角线的交点,不能判定这个平行四边形是正方形的是(  )
A.∠BAD=90°,AB=ADB.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BDD.AB=AC,∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,如果点P是直线CD上的一个动点(不与点C,D重合),连接PA,分别过B,D作BE⊥PA,DF⊥PA,垂足为E,F.

(1)请在上面图中画出不同情况下的草图,并猜想BE,DF,EF这三条线段之间有怎样的数量关系;
(2)请在上面的3个图中选择一个证明你的结论.

查看答案和解析>>

同步练习册答案